Improvement of the piezoelectricity of PVDF-HFP by CoFe2O4 nanoparticles

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-04-01 DOI:10.1016/j.nanoms.2023.03.002
Dan Lei , Ning Hu , Liangke Wu , Alamusi , Huiming Ning , Yang Wang , Zhaonan Jin , Yaolu Liu
{"title":"Improvement of the piezoelectricity of PVDF-HFP by CoFe2O4 nanoparticles","authors":"Dan Lei ,&nbsp;Ning Hu ,&nbsp;Liangke Wu ,&nbsp;Alamusi ,&nbsp;Huiming Ning ,&nbsp;Yang Wang ,&nbsp;Zhaonan Jin ,&nbsp;Yaolu Liu","doi":"10.1016/j.nanoms.2023.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ferromagnetic cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>) (0.00 ​wt% to 0.2 ​wt%) are prepared by a solution casting method accompanied by uniaxial stretching and high electric field poling. The decisive effect of the poling electric field on the power generating capability was confirmed by the experiments. For pure PVDF-HFP films, when the maximum electric field <em>E</em><sub>max</sub> is 120 ​MV/m, the calibrated open circuit voltage reaches 2.93 ​V, which is much higher than those poled at lower electric fields (70 ​MV/m: 1.41 ​V; 90 ​MV/m: 2.11 ​V). Furthermore, the addition of CoFe<sub>2</sub>O<sub>4</sub> also influences the piezoelectricity dramatically. In the samples containing 0.15 ​wt% CoFe<sub>2</sub>O<sub>4</sub>, the calibrated open circuit voltage increases to the maximum value of 3.57 ​V. Meanwhile, the relative fraction of the <em>β</em>-phase and the crystallinity degree are 99% and 48%, respectively. The effects of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles on initial crystallization, uniaxial stretching and high electric field poling are investigated by XRD, FTIR and DSC.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 2","pages":"Pages 201-210"},"PeriodicalIF":9.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000089/pdfft?md5=b5a1bd88016de95bc3659a3ccbed7ede&pid=1-s2.0-S2589965123000089-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ferromagnetic cobalt ferrite (CoFe2O4) (0.00 ​wt% to 0.2 ​wt%) are prepared by a solution casting method accompanied by uniaxial stretching and high electric field poling. The decisive effect of the poling electric field on the power generating capability was confirmed by the experiments. For pure PVDF-HFP films, when the maximum electric field Emax is 120 ​MV/m, the calibrated open circuit voltage reaches 2.93 ​V, which is much higher than those poled at lower electric fields (70 ​MV/m: 1.41 ​V; 90 ​MV/m: 2.11 ​V). Furthermore, the addition of CoFe2O4 also influences the piezoelectricity dramatically. In the samples containing 0.15 ​wt% CoFe2O4, the calibrated open circuit voltage increases to the maximum value of 3.57 ​V. Meanwhile, the relative fraction of the β-phase and the crystallinity degree are 99% and 48%, respectively. The effects of CoFe2O4 nanoparticles on initial crystallization, uniaxial stretching and high electric field poling are investigated by XRD, FTIR and DSC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoFe2O4纳米颗粒改善PVDF-HFP的压电性
采用溶液浇铸法制备了由聚(偏氟乙烯-六氟丙烯)(PVDF-HFP)和铁磁性钴铁氧体(CoFe2O4)(0.00 wt% 至 0.2 wt%)组成的高压电复合薄膜,同时进行了单轴拉伸和高电场极化。实验证实了极化电场对发电能力的决定性影响。对于纯 PVDF-HFP 薄膜,当最大电场 Emax 为 120 MV/m 时,标定开路电压达到 2.93 V,远高于在较低电场下极化的薄膜(70 MV/m:1.41 V;90 MV/m:2.11 V)。此外,CoFe2O4 的添加也会显著影响压电性。在含有 0.15 wt% CoFe2O4 的样品中,校准开路电压增至最大值 3.57 V。同时,β 相的相对比例和结晶度分别为 99% 和 48%。通过 XRD、FTIR 和 DSC 研究了 CoFe2O4 纳米颗粒对初始结晶、单轴拉伸和高电场极化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1