A. Limkakeng, L. Rowlette, A. Hatch, A. Nixon, O. Ilkayeva, D. Corcoran, J. Modliszewski, S. M. Griffin, G. Ginsburg, D. Voora
{"title":"A precision medicine approach to stress testing using metabolomics and microribonucleic acids.","authors":"A. Limkakeng, L. Rowlette, A. Hatch, A. Nixon, O. Ilkayeva, D. Corcoran, J. Modliszewski, S. M. Griffin, G. Ginsburg, D. Voora","doi":"10.2217/pme-2021-0021","DOIUrl":null,"url":null,"abstract":"Both transcriptomics and metabolomics hold promise for identifying acute coronary syndrome (ACS) but they have not been used in combination, nor have dynamic changes in levels been assessed as a diagnostic tool. We assessed integrated analysis of peripheral blood miRNA and metabolite analytes to distinguish patients with myocardial ischemia on cardiac stress testing. We isolated and quantified miRNA and metabolites before and after stress testing from seven patients with myocardial ischemia and 1:1 matched controls. The combined miRNA and metabolomic data were analyzed jointly in a supervised, dimension-reducing discriminant analysis. We implemented a baseline model (T0) and a stress-delta model. This novel integrative analysis of the baseline levels of metabolites and miRNA expression showed modest performance for distinguishing cases from controls. The stress-delta model showed worse performance. This pilot study shows potential for an integrated precision medicine approach to cardiac stress testing.","PeriodicalId":19753,"journal":{"name":"Personalized medicine","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2217/pme-2021-0021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
Both transcriptomics and metabolomics hold promise for identifying acute coronary syndrome (ACS) but they have not been used in combination, nor have dynamic changes in levels been assessed as a diagnostic tool. We assessed integrated analysis of peripheral blood miRNA and metabolite analytes to distinguish patients with myocardial ischemia on cardiac stress testing. We isolated and quantified miRNA and metabolites before and after stress testing from seven patients with myocardial ischemia and 1:1 matched controls. The combined miRNA and metabolomic data were analyzed jointly in a supervised, dimension-reducing discriminant analysis. We implemented a baseline model (T0) and a stress-delta model. This novel integrative analysis of the baseline levels of metabolites and miRNA expression showed modest performance for distinguishing cases from controls. The stress-delta model showed worse performance. This pilot study shows potential for an integrated precision medicine approach to cardiac stress testing.
期刊介绍:
Personalized Medicine (ISSN 1741-0541) translates recent genomic, genetic and proteomic advances into the clinical context. The journal provides an integrated forum for all players involved - academic and clinical researchers, pharmaceutical companies, regulatory authorities, healthcare management organizations, patient organizations and others in the healthcare community. Personalized Medicine assists these parties to shape thefuture of medicine by providing a platform for expert commentary and analysis.
The journal addresses scientific, commercial and policy issues in the field of precision medicine and includes news and views, current awareness regarding new biomarkers, concise commentary and analysis, reports from the conference circuit and full review articles.