Microscopic formulation of the interacting boson model for reflection asymmetric nuclei

IF 1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR International Journal of Modern Physics E Pub Date : 2022-11-01 DOI:10.1142/s0218301323400013
Kosuke Nomura
{"title":"Microscopic formulation of the interacting boson model for reflection asymmetric nuclei","authors":"Kosuke Nomura","doi":"10.1142/s0218301323400013","DOIUrl":null,"url":null,"abstract":"Reflection asymmetric, octupole shapes in nuclei are a prominent aspect of nuclear structure, and have been recurrently studied over the decades. Recent experiments using radioactive-ion beams have provided evidence for stable octupole shapes. A variety of nuclear models have been employed for the related theoretical analyses. We review recent studies on the nuclear octupole shapes and collective excitations within the interacting boson model. A special focus is placed on the microscopic formulation of this model by using the mean-field method that is based on the framework of nuclear density functional theory. As an illustrative example, a stable octupole deformation, and a shape phase transition as a function of nucleon number that involves both quadrupole and octupole degrees of freedom are shown to occur in light actinides. Systematic spectroscopic studies indicate enhancement of the octupole collectivity in a wide mass region. Couplings between the octupole and additional degrees of freedom are incorporated in a microscopic manner in the boson system, and shown to play a crucial role in the description of the related intriguing nuclear structure phenomena such as the shape coexistence.","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218301323400013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 1

Abstract

Reflection asymmetric, octupole shapes in nuclei are a prominent aspect of nuclear structure, and have been recurrently studied over the decades. Recent experiments using radioactive-ion beams have provided evidence for stable octupole shapes. A variety of nuclear models have been employed for the related theoretical analyses. We review recent studies on the nuclear octupole shapes and collective excitations within the interacting boson model. A special focus is placed on the microscopic formulation of this model by using the mean-field method that is based on the framework of nuclear density functional theory. As an illustrative example, a stable octupole deformation, and a shape phase transition as a function of nucleon number that involves both quadrupole and octupole degrees of freedom are shown to occur in light actinides. Systematic spectroscopic studies indicate enhancement of the octupole collectivity in a wide mass region. Couplings between the octupole and additional degrees of freedom are incorporated in a microscopic manner in the boson system, and shown to play a crucial role in the description of the related intriguing nuclear structure phenomena such as the shape coexistence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反射不对称核的相互作用玻色子模型的微观表述
反射不对称,核中的八极形状是核结构的一个突出方面,几十年来一直被反复研究。最近使用放射性离子束的实验为稳定的八极形状提供了证据。各种核模型已被用于相关的理论分析。本文综述了近年来在相互作用玻色子模型中核八极子形状和集体激发的研究进展。一个特别的重点放在微观公式的这个模型,使用平均场方法,是基于核密度泛函理论的框架。作为一个说明性的例子,一个稳定的八极变形和形状相变作为一个函数的核子数涉及四极和八极自由度显示发生在轻锕系元素。系统的光谱研究表明,在较宽的质量区域,八极子集体增强。八极子和附加自由度之间的耦合以微观的方式被纳入玻色子系统中,并在描述相关的有趣的核结构现象(如形状共存)中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Modern Physics E
International Journal of Modern Physics E 物理-物理:核物理
CiteScore
1.90
自引率
18.20%
发文量
98
审稿时长
4-8 weeks
期刊介绍: This journal covers the topics on experimental and theoretical nuclear physics, and its applications and interface with astrophysics and particle physics. The journal publishes research articles as well as review articles on topics of current interest.
期刊最新文献
Machine learning nuclear orbital-free density functional based on Thomas–Fermi approach Multiplicity correlation of fast target protons and projectile fragments for the events produced in the interaction of 84Kr nuclei with emulsion nuclei at 1 A GeV Pseudospin symmetry in resonant states in deformed nucleus 154Dy Properties of the 7He ground state studied by the 6He(d,p)7He reaction Fraction constraint in partial wave analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1