{"title":"Beryllene, the lightest Xene","authors":"Sumit Chahal, Arkamita Bandyopadhyay, Chan-Shan Yang, Prashant Kumar","doi":"10.1038/s41699-023-00415-y","DOIUrl":null,"url":null,"abstract":"After the discovery of sp2-hybridized graphene and even lighter borophene, the scientific quest for the thinnest metallic sheets prompts the discovery of beryllene. As beryllium lacks p-electrons, the hybridization and structural evolution of beryllene in determining electronic/excitonic behaviors are scientifically interesting. Herein, we report the experimental realization of freestanding flat beryllene sheets with a lateral dimension of ~0.2–4 μm via sonochemical exfoliation. High-resolution transmission electron microscopy establishes the existence of hexagonal, square and stripe crystallographic phases. While characteristic Raman fingerprints ~451 and ~614 cm−1, and experimentally observed electrically metallic nature of beryllene (vindicated by density-functional-theory band structure calculations) establish beryllene synthesis. Room temperature magnetism in Be-G and Be-CNT hybrids (established by Raman mapping and magnetic force microscopic imaging) is an interesting finding. Beryllene was explored as a surface-enhanced Raman spectroscopy (SERS) anchor in molecular sensing, oxidation-resistant, and fire-resistant laminates. It is believed that the discovery of beryllene will lead to novel functionalities and emerging applications.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-13"},"PeriodicalIF":9.1000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-023-00415-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-023-00415-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
After the discovery of sp2-hybridized graphene and even lighter borophene, the scientific quest for the thinnest metallic sheets prompts the discovery of beryllene. As beryllium lacks p-electrons, the hybridization and structural evolution of beryllene in determining electronic/excitonic behaviors are scientifically interesting. Herein, we report the experimental realization of freestanding flat beryllene sheets with a lateral dimension of ~0.2–4 μm via sonochemical exfoliation. High-resolution transmission electron microscopy establishes the existence of hexagonal, square and stripe crystallographic phases. While characteristic Raman fingerprints ~451 and ~614 cm−1, and experimentally observed electrically metallic nature of beryllene (vindicated by density-functional-theory band structure calculations) establish beryllene synthesis. Room temperature magnetism in Be-G and Be-CNT hybrids (established by Raman mapping and magnetic force microscopic imaging) is an interesting finding. Beryllene was explored as a surface-enhanced Raman spectroscopy (SERS) anchor in molecular sensing, oxidation-resistant, and fire-resistant laminates. It is believed that the discovery of beryllene will lead to novel functionalities and emerging applications.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.