Dry sliding friction and wear behaviour of developed copper metal matrix hybrid composites

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL International Journal of Surface Science and Engineering Pub Date : 2019-09-17 DOI:10.1504/ijsurfse.2019.10024006
Manvandra Kumar Singh, R. Gautam
{"title":"Dry sliding friction and wear behaviour of developed copper metal matrix hybrid composites","authors":"Manvandra Kumar Singh, R. Gautam","doi":"10.1504/ijsurfse.2019.10024006","DOIUrl":null,"url":null,"abstract":"In the present investigation, dry sliding friction and wear behaviour of developed copper-based hybrid composites were studied. Tungsten carbide (WC), zirconia (ZrO2), alumina (Al2O3) of grade A6 and chromium (Cr) hybrid reinforcements were utilised to develop various copper-based hybrid composites using liquid stir-casting technique. The developed hybrid composites were characterised by X-rays diffraction (XRD), high-resolution scanning electron microscope (HR-SEM), energy-dispersive analysis of X-rays (EDAX), relative density and Vickers hardness. Developed hybrid composites show improved Vickers hardness compared to its copper matrix while relative density was found lower. Dry sliding friction and wear behaviour of the developed hybrid composites were studied using pin-on-disc tribometer at variable normal load, constant sliding speed and sliding distance. Hybrid composites exhibited low wear compared to its copper matrix, particularly (WC + Al2O3 + Cr) hybrid reinforced composites revealed better wear resistance among all. Fluctuating nature of the coefficient of friction was observed in all the materials. However, developed hybrid composites revealed higher coefficient of friction compared with its matrix. The worn surfaces were analysed using scanning electron microscopy (SEM), EDAX and optical profilometer to discuss the friction and anti-wear mechanism involved in developed materials.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2019.10024006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5

Abstract

In the present investigation, dry sliding friction and wear behaviour of developed copper-based hybrid composites were studied. Tungsten carbide (WC), zirconia (ZrO2), alumina (Al2O3) of grade A6 and chromium (Cr) hybrid reinforcements were utilised to develop various copper-based hybrid composites using liquid stir-casting technique. The developed hybrid composites were characterised by X-rays diffraction (XRD), high-resolution scanning electron microscope (HR-SEM), energy-dispersive analysis of X-rays (EDAX), relative density and Vickers hardness. Developed hybrid composites show improved Vickers hardness compared to its copper matrix while relative density was found lower. Dry sliding friction and wear behaviour of the developed hybrid composites were studied using pin-on-disc tribometer at variable normal load, constant sliding speed and sliding distance. Hybrid composites exhibited low wear compared to its copper matrix, particularly (WC + Al2O3 + Cr) hybrid reinforced composites revealed better wear resistance among all. Fluctuating nature of the coefficient of friction was observed in all the materials. However, developed hybrid composites revealed higher coefficient of friction compared with its matrix. The worn surfaces were analysed using scanning electron microscopy (SEM), EDAX and optical profilometer to discuss the friction and anti-wear mechanism involved in developed materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发的铜-金属基复合材料的干滑动摩擦磨损行为
在本研究中,研究了所开发的铜基杂化复合材料的干滑动摩擦磨损行为。采用液体搅拌铸造技术,利用碳化钨(WC)、氧化锆(ZrO2)、A6级氧化铝(Al2O3)和铬(Cr)混杂增强材料开发了各种铜基混杂复合材料。通过X射线衍射(XRD)、高分辨率扫描电子显微镜(HR-SEM)、X射线能量色散分析(EDAX)、相对密度和维氏硬度对所开发的杂化复合材料进行了表征。与铜基体相比,所开发的杂化复合材料显示出更好的维氏硬度,同时发现相对密度更低。采用销盘式摩擦计研究了所研制的复合材料在变法向载荷、恒定滑动速度和滑动距离下的干滑动摩擦磨损行为。与铜基体相比,混杂复合材料表现出较低的耐磨性,特别是(WC+Al2O3+Cr)混杂增强复合材料在所有材料中表现出更好的耐磨性。在所有材料中都观察到摩擦系数的波动性。然而,与基体相比,所开发的杂化复合材料显示出更高的摩擦系数。利用扫描电子显微镜(SEM)、EDAX和光学轮廓仪对磨损表面进行了分析,探讨了所开发材料的摩擦和抗磨机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
25.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.
期刊最新文献
Nanofiber composite PCL/HA coating by spray method on metallic implant materials for medical applications: A Study on the Different spraying distances and pressures A novel magnetorheological finishing process based on three revolving flat tip tools for external cylindrical surfaces Investigation of solid particle erosion behaviour of Fe-Cr alloy coating Surface integrity and chip morphology in Ti-6Al-4V machining under CO2 cooling with Vortex Tube Characterisation of surfaces coated with different nanocellulose-based suspensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1