{"title":"Dry sliding friction and wear behaviour of developed copper metal matrix hybrid composites","authors":"Manvandra Kumar Singh, R. Gautam","doi":"10.1504/ijsurfse.2019.10024006","DOIUrl":null,"url":null,"abstract":"In the present investigation, dry sliding friction and wear behaviour of developed copper-based hybrid composites were studied. Tungsten carbide (WC), zirconia (ZrO2), alumina (Al2O3) of grade A6 and chromium (Cr) hybrid reinforcements were utilised to develop various copper-based hybrid composites using liquid stir-casting technique. The developed hybrid composites were characterised by X-rays diffraction (XRD), high-resolution scanning electron microscope (HR-SEM), energy-dispersive analysis of X-rays (EDAX), relative density and Vickers hardness. Developed hybrid composites show improved Vickers hardness compared to its copper matrix while relative density was found lower. Dry sliding friction and wear behaviour of the developed hybrid composites were studied using pin-on-disc tribometer at variable normal load, constant sliding speed and sliding distance. Hybrid composites exhibited low wear compared to its copper matrix, particularly (WC + Al2O3 + Cr) hybrid reinforced composites revealed better wear resistance among all. Fluctuating nature of the coefficient of friction was observed in all the materials. However, developed hybrid composites revealed higher coefficient of friction compared with its matrix. The worn surfaces were analysed using scanning electron microscopy (SEM), EDAX and optical profilometer to discuss the friction and anti-wear mechanism involved in developed materials.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2019.10024006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 5
Abstract
In the present investigation, dry sliding friction and wear behaviour of developed copper-based hybrid composites were studied. Tungsten carbide (WC), zirconia (ZrO2), alumina (Al2O3) of grade A6 and chromium (Cr) hybrid reinforcements were utilised to develop various copper-based hybrid composites using liquid stir-casting technique. The developed hybrid composites were characterised by X-rays diffraction (XRD), high-resolution scanning electron microscope (HR-SEM), energy-dispersive analysis of X-rays (EDAX), relative density and Vickers hardness. Developed hybrid composites show improved Vickers hardness compared to its copper matrix while relative density was found lower. Dry sliding friction and wear behaviour of the developed hybrid composites were studied using pin-on-disc tribometer at variable normal load, constant sliding speed and sliding distance. Hybrid composites exhibited low wear compared to its copper matrix, particularly (WC + Al2O3 + Cr) hybrid reinforced composites revealed better wear resistance among all. Fluctuating nature of the coefficient of friction was observed in all the materials. However, developed hybrid composites revealed higher coefficient of friction compared with its matrix. The worn surfaces were analysed using scanning electron microscopy (SEM), EDAX and optical profilometer to discuss the friction and anti-wear mechanism involved in developed materials.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.