Elastic-plastic Properties of Meso-scale Electrodeposited Liga Nickel Alloy Films: Analysis of Measurement Uncertainties

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2023-03-09 DOI:10.1115/1.4062106
L. Liew, D. Read, May L. Martin, P. Bradley, J. Geaney
{"title":"Elastic-plastic Properties of Meso-scale Electrodeposited Liga Nickel Alloy Films: Analysis of Measurement Uncertainties","authors":"L. Liew, D. Read, May L. Martin, P. Bradley, J. Geaney","doi":"10.1115/1.4062106","DOIUrl":null,"url":null,"abstract":"\n It is well documented that the microstructure and properties of electrodeposited films, such as LIGA Ni and its alloys, are highly sensitive to processing conditions hence the literature shows large discrepancies in mechanical properties, even for similar alloys. Given this expected material variability as well as the experimental challenges with small-scale mechanical testing, measurement uncertainties are needed for property values to be applied appropriately, and yet are uncommon in micro- and meso-scale tensile testing studies. In a separate paper we reported the elastic-plastic properties of 200 μm -thick freestanding films of LIGA-fabricated nanocrystalline Ni-10 %Fe and microcrystalline Ni-10 %Co, with specimen gauge widths ranging from 75 μm to 700 μm, and tensile tested at strain rates 0.001 s-1 and 1 s-1. The loads were applied by commercial miniature and benchtop load frames, and strain was measured by digital image correlation. In this paper we examine the measurement uncertainties in the ultimate tensile strength, apparent Young's modulus, 0.2 % offset yield strength, and strain hardening parameters. For several of these properties, the standard deviation cannot be interpreted as the statistical scatter because the measurement uncertainty was larger. Microplasticity affects the modulus measurement, thus we recommended measuring the modulus after cyclic loading. These measurement uncertainty issues might be relevant to similar works on small-scale tensile testing and might help the reader to interpret the discrepancies in literature values of mechanical properties for LIGA and electrodeposited films.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

It is well documented that the microstructure and properties of electrodeposited films, such as LIGA Ni and its alloys, are highly sensitive to processing conditions hence the literature shows large discrepancies in mechanical properties, even for similar alloys. Given this expected material variability as well as the experimental challenges with small-scale mechanical testing, measurement uncertainties are needed for property values to be applied appropriately, and yet are uncommon in micro- and meso-scale tensile testing studies. In a separate paper we reported the elastic-plastic properties of 200 μm -thick freestanding films of LIGA-fabricated nanocrystalline Ni-10 %Fe and microcrystalline Ni-10 %Co, with specimen gauge widths ranging from 75 μm to 700 μm, and tensile tested at strain rates 0.001 s-1 and 1 s-1. The loads were applied by commercial miniature and benchtop load frames, and strain was measured by digital image correlation. In this paper we examine the measurement uncertainties in the ultimate tensile strength, apparent Young's modulus, 0.2 % offset yield strength, and strain hardening parameters. For several of these properties, the standard deviation cannot be interpreted as the statistical scatter because the measurement uncertainty was larger. Microplasticity affects the modulus measurement, thus we recommended measuring the modulus after cyclic loading. These measurement uncertainty issues might be relevant to similar works on small-scale tensile testing and might help the reader to interpret the discrepancies in literature values of mechanical properties for LIGA and electrodeposited films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中尺度电沉积Liga镍合金薄膜的弹塑性性能:测量不确定度分析
有充分的证据表明,电沉积薄膜的微观结构和性能,如LIGA Ni及其合金,对加工条件高度敏感,因此文献显示,即使是类似的合金,其机械性能也存在很大差异。考虑到这种预期的材料可变性以及小规模机械测试的实验挑战,需要测量不确定性来适当地应用性能值,但在微观和中尺度拉伸测试研究中并不常见。在另一篇论文中,我们报道了200 μm厚的liga制备的ni - 10% Fe纳米晶和ni - 10% Co微晶独立薄膜的弹塑性性能,试样宽度从75 μm到700 μm,并在应变速率0.001 s-1和1 s-1下进行了拉伸测试。采用商用微型和台式载荷框架,通过数字图像相关测量应变。在本文中,我们研究了极限抗拉强度、表观杨氏模量、0.2%偏移屈服强度和应变硬化参数的测量不确定性。对于其中一些特性,由于测量不确定度较大,标准偏差不能解释为统计散点。微塑性影响模量测量,建议在循环加载后测量模量。这些测量不确定度问题可能与小规模拉伸试验的类似工作有关,并可能有助于读者解释LIGA和电沉积薄膜机械性能的文献值差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
A Curved Surface Integral Method for Reliability Analysis of Multiple Failure Modes System with Non-Overlapping Failure Domains A Framework for Developing Systematic Testbeds for Multi-Fidelity Optimization Techniques Reliability Analysis for RV Reducer by Combining PCE and Saddlepoint Approximation Considering Multi-Failure Modes Machine Learning-Based Resilience Modeling and Assessment of High Consequence Systems Under Uncertainty Posterior Covariance Matrix Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1