Replication study challenges and new number formats for chaotic pseudo random number generators

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2022-02-04 DOI:10.1515/itit-2021-0065
Carina Heßeling, J. Keller
{"title":"Replication study challenges and new number formats for chaotic pseudo random number generators","authors":"Carina Heßeling, J. Keller","doi":"10.1515/itit-2021-0065","DOIUrl":null,"url":null,"abstract":"Abstract Chaotic Pseudo Random Number Generators have been seen as a promising candidate for secure random number generation. Using the logistic map as state transition function, we perform number generation experiments that illustrate the challenges when trying to do a replication study. Those challenges range from uncertainties about the rounding mode in arithmetic hardware over chosen number representations for variables to compiler or programmer decisions on evaluation order for arithmetic expressions. We find that different decisions lead to different streams with different security properties, where we focus on period length. However, descriptions in articles often are not detailed enough to deduce all decisions unambiguously. To address similar problems in other replication studies for security applications, we propose recommendations for descriptions of numerical experiments on security applications to avoid the above challenges. Moreover, we use the results to propose the use of higher-radix and mixed-radix representations to trade storage size for period length, and investigate if exploiting the symmetry of the logistic map function for number representation is advantageous.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Chaotic Pseudo Random Number Generators have been seen as a promising candidate for secure random number generation. Using the logistic map as state transition function, we perform number generation experiments that illustrate the challenges when trying to do a replication study. Those challenges range from uncertainties about the rounding mode in arithmetic hardware over chosen number representations for variables to compiler or programmer decisions on evaluation order for arithmetic expressions. We find that different decisions lead to different streams with different security properties, where we focus on period length. However, descriptions in articles often are not detailed enough to deduce all decisions unambiguously. To address similar problems in other replication studies for security applications, we propose recommendations for descriptions of numerical experiments on security applications to avoid the above challenges. Moreover, we use the results to propose the use of higher-radix and mixed-radix representations to trade storage size for period length, and investigate if exploiting the symmetry of the logistic map function for number representation is advantageous.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混沌伪随机数发生器的复制研究挑战和新数字格式
摘要混沌伪随机数生成器被认为是一种很有前途的安全随机数生成器。使用逻辑图作为状态转换函数,我们进行了数字生成实验,说明了在尝试进行复制研究时面临的挑战。这些挑战包括算术硬件中对变量所选数字表示的舍入模式的不确定性,以及编译器或程序员对算术表达式求值顺序的决定。我们发现,不同的决策会导致具有不同安全属性的不同流,我们关注的是周期长度。然而,文章中的描述往往不够详细,无法毫不含糊地推断出所有决策。为了解决其他安全应用复制研究中的类似问题,我们建议描述安全应用的数值实验,以避免上述挑战。此外,我们利用这些结果提出使用更高基数和混合基数表示来用存储大小换取周期长度,并研究利用逻辑映射函数的对称性进行数字表示是否有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1