Ryuichi Wada, Y. Sadanaga, S. Kato, N. Katsumi, H. Okochi, Y. Iwamoto, K. Miura, H. Kobayashi, M. Kamogawa, J. Matsumoto, S. Yonemura, Y. Matsumi, M. Kajino, S. Hatakeyama
{"title":"Ground-based observation of lightning-induced nitrogen oxides at a mountaintop in free troposphere","authors":"Ryuichi Wada, Y. Sadanaga, S. Kato, N. Katsumi, H. Okochi, Y. Iwamoto, K. Miura, H. Kobayashi, M. Kamogawa, J. Matsumoto, S. Yonemura, Y. Matsumi, M. Kajino, S. Hatakeyama","doi":"10.1007/s10874-019-09391-4","DOIUrl":null,"url":null,"abstract":"<p>Lightning is an important source of nitrogen oxides (LNO<sub>x</sub>). The actual global production of LNO<sub>x</sub> is still largely uncertain. One of the reasons for this uncertainty is the limited available observation data. We measured the concentrations of total reactive nitrogen (NO<sub>y</sub>), nitric oxide (NO) and nitrogen dioxides (NO<sub>2</sub>) and then obtained NO<sub>x</sub> oxidation products (NO<sub>z</sub>: NO<sub>z</sub>?=?NO<sub>y</sub> - NO<sub>x</sub>) at a station at the top of Mount Fuji (3776?m?a.s.l.) during the summer of 2017. Increases in NO<sub>y</sub> and NO<sub>2</sub> were observed on 22 August 2017. These peaks were unaccompanied by increases in CO, which suggested that the observed air mass did not contain emissions from combustion. The backward trajectories of the above air mass indicated that it moved across areas where lightning occurred. The NO<sub>y</sub> concentration was also calculated by using a chemical transport model, which did not take NO<sub>x</sub> produced by lightning into account. Therefore, the NO<sub>y</sub> concentration due to lightning can be inferred by subtracting the calculated NO<sub>y</sub> from the observed NO<sub>y</sub> concentrations. The concentration of NO<sub>y</sub> at 13:00 on 22 August 2017 originating from lightning was estimated to be 1.11?±?0.02 ppbv, which comprised 97?±?2% of the total NO<sub>y</sub> concentration. The fractions of NO<sub>2</sub> and NO<sub>z</sub> in the total NO<sub>y</sub> were 0.54?±?0.01 and 0.46?±?0.03, respectively. The NO concentration was below the detection limit. We firstly observed increase of concentrations of NO<sub>y</sub> originating from lightning by ground-based observation and demonstrated the quantitative estimates of LNO<sub>x</sub> using model-based calculation.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"76 2","pages":"133 - 150"},"PeriodicalIF":3.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-019-09391-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-019-09391-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Lightning is an important source of nitrogen oxides (LNOx). The actual global production of LNOx is still largely uncertain. One of the reasons for this uncertainty is the limited available observation data. We measured the concentrations of total reactive nitrogen (NOy), nitric oxide (NO) and nitrogen dioxides (NO2) and then obtained NOx oxidation products (NOz: NOz?=?NOy - NOx) at a station at the top of Mount Fuji (3776?m?a.s.l.) during the summer of 2017. Increases in NOy and NO2 were observed on 22 August 2017. These peaks were unaccompanied by increases in CO, which suggested that the observed air mass did not contain emissions from combustion. The backward trajectories of the above air mass indicated that it moved across areas where lightning occurred. The NOy concentration was also calculated by using a chemical transport model, which did not take NOx produced by lightning into account. Therefore, the NOy concentration due to lightning can be inferred by subtracting the calculated NOy from the observed NOy concentrations. The concentration of NOy at 13:00 on 22 August 2017 originating from lightning was estimated to be 1.11?±?0.02 ppbv, which comprised 97?±?2% of the total NOy concentration. The fractions of NO2 and NOz in the total NOy were 0.54?±?0.01 and 0.46?±?0.03, respectively. The NO concentration was below the detection limit. We firstly observed increase of concentrations of NOy originating from lightning by ground-based observation and demonstrated the quantitative estimates of LNOx using model-based calculation.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.