Demulsification Performance of Superhydrophobic PVDF Membrane: A Parametric Study

F. Banat, A. Hai, M. Selvaraj, Bharath Govindan, Rambabu Krishnamoorthy, Shadi W. Hassan
{"title":"Demulsification Performance of Superhydrophobic PVDF Membrane: A Parametric Study","authors":"F. Banat, A. Hai, M. Selvaraj, Bharath Govindan, Rambabu Krishnamoorthy, Shadi W. Hassan","doi":"10.22079/JMSR.2020.122768.1353","DOIUrl":null,"url":null,"abstract":"Oil-water separation using hierarchical-structured superhydrophobic and superoleophilic membranes have been recently received remarkable attention. In this study, a polyvinylidene difluoride (PVDF) based membrane was prepared by a non-solvent induced phase inversion method for oil-water emulsions separation. The influences of the two key parameters, namely the concentration of emulsifying agent and water content of the feed emulsion, on the membrane performance were investigated in terms of the permeate flux and water rejection. Span-80, distilled water and n-eptane were employed as an emulsifying agent, dispersed phase and continuous phase, respectively. Results showed that an increase in the emulsifier concentration led to a decrease in the oil permeate flux and water rejection. The emulsifier concentration had the most significant effect on the oil-water separation compared with the water content in the feed emulsion. In a continuous experiment lasted for 120 h, more than 95% water rejection was maintained but with a significant drop in oil flux. The well-structured superhydrophobic PVDF membrane showed promise for water-in-oil emulsion separations.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"390-394"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2020.122768.1353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

Oil-water separation using hierarchical-structured superhydrophobic and superoleophilic membranes have been recently received remarkable attention. In this study, a polyvinylidene difluoride (PVDF) based membrane was prepared by a non-solvent induced phase inversion method for oil-water emulsions separation. The influences of the two key parameters, namely the concentration of emulsifying agent and water content of the feed emulsion, on the membrane performance were investigated in terms of the permeate flux and water rejection. Span-80, distilled water and n-eptane were employed as an emulsifying agent, dispersed phase and continuous phase, respectively. Results showed that an increase in the emulsifier concentration led to a decrease in the oil permeate flux and water rejection. The emulsifier concentration had the most significant effect on the oil-water separation compared with the water content in the feed emulsion. In a continuous experiment lasted for 120 h, more than 95% water rejection was maintained but with a significant drop in oil flux. The well-structured superhydrophobic PVDF membrane showed promise for water-in-oil emulsion separations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超疏水PVDF膜破乳性能的参数研究
使用分级结构的超疏水和超亲油膜进行油水分离最近受到了显著的关注。本研究采用非溶剂诱导相转化法制备了聚偏二氟乙烯(PVDF)基油水乳液分离膜。研究了乳化剂浓度和进料乳液含水量两个关键参数对膜渗透通量和拒水性能的影响。以Span-80、蒸馏水和正庚烷为乳化剂,分别采用分散相和连续相。结果表明,乳化剂浓度的增加导致渗透油通量和拒水率的降低。与进料乳液中的含水量相比,乳化剂浓度对油水分离的影响最为显著。在持续120小时的连续实验中,保持了95%以上的拒水率,但油流量显著下降。结构良好的超疏水PVDF膜显示出油包水乳液分离的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
期刊最新文献
Matrimid®5218/AO-PIM-1 Blend Membranes for Gas Separation Thin film nanocomposite (TFN) membrane comprising Pebax®1657 and porous organic polymers (POP) for favored CO2 separation New challenges and applications of supported liquid membrane systems based on facilitated transport in liquid phase separations of metallic species Effect of multi-staging in vacuum membrane distillation on productivity and temperature polarization Gas permselectivity of hyperbranched polybenzoxazole – silica hybrid membranes treated at different thermal protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1