Monitoring sequential structural changes in penalized high-dimensional linear models

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Sequential Analysis-Design Methods and Applications Pub Date : 2021-07-03 DOI:10.1080/07474946.2021.1940500
Suthakaran Ratnasingam, Wei Ning
{"title":"Monitoring sequential structural changes in penalized high-dimensional linear models","authors":"Suthakaran Ratnasingam, Wei Ning","doi":"10.1080/07474946.2021.1940500","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose a procedure to monitor the structural changes in the penalized regression model for high-dimensional data sequentially. Our approach utilizes a given historical data set to perform both variable selection and estimation simultaneously. The asymptotic properties of the test statistics are established under the null and alternative hypotheses. The finite sample behavior of the monitoring procedure is investigated with simulation studies. The proposed method is applied to a real data set to illustrate the detection procedure.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":"40 1","pages":"381 - 404"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2021.1940500","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this article, we propose a procedure to monitor the structural changes in the penalized regression model for high-dimensional data sequentially. Our approach utilizes a given historical data set to perform both variable selection and estimation simultaneously. The asymptotic properties of the test statistics are established under the null and alternative hypotheses. The finite sample behavior of the monitoring procedure is investigated with simulation studies. The proposed method is applied to a real data set to illustrate the detection procedure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监测惩罚高维线性模型的顺序结构变化
在本文中,我们提出了一个程序来监测高维数据的惩罚回归模型的结构变化。我们的方法利用给定的历史数据集同时执行变量选择和估计。在零假设和备假设下,建立了检验统计量的渐近性质。用仿真方法研究了监测过程的有限样本行为。将该方法应用于实际数据集,说明了该方法的检测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
20
期刊介绍: The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches. Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.
期刊最新文献
Distribution of number of observations required to obtain a cover for the support of a uniform distribution Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring Two-stage estimation of the combination of location and scale parameter of the exponential distribution under the constraint of bounded risk per unit cost index Comparison of Gini indices using sequential approach: Application to the U.S. Small Business Administration data An ARL-unbiased modified chart for monitoring autoregressive counts with geometric marginal distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1