Shabarish S. , Tamilarasan K. , Rajesh Banu J. , Godvin Sharmila V.
{"title":"Biohydrogen production from macroalgae via sonic biosurfactant disintegration: An energy efficient approach","authors":"Shabarish S. , Tamilarasan K. , Rajesh Banu J. , Godvin Sharmila V.","doi":"10.1016/j.resenv.2022.100093","DOIUrl":null,"url":null,"abstract":"<div><p>An energy-efficient disintegration approach used to produce biohydrogen from marine macroalgae biomass (<em>Chaetomorpha antennina</em>) was demonstrated in this study. The suggested research aimed to explain the function of macroalgae disintegration by sonication (DS) and disintegration by a sonic surfactant (DSS) in biohydrogen production. Biosurfactant dosage (3 <span><math><mi>μ</mi></math></span>L/g TS), sonic intensity (50%) and disintegration duration (30 min) were found to be an optimum conditions for DSS with respect to dissoluted organics release (DOR). Volatile fatty acids (VFA) generation was higher in DSS (1845 mg/L) than DS (864 mg/L) When DS and DSS were compared, DSS had a substantially higher disintegration efficiency (DE) and biohydrogen yield (26%, 147 mL <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>/gCOD) than DS (21.5%, 121 mL <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>/gCOD). Net energy (NE) obtained in DSS (0.044 kWh/kg of biomass) was more than the DS (−0.02 kWh/kg of biomass). DSS had a higher energy ratio of 1.8, while DS had a lower energy ratio of 0.7. Overall, DSS was found to be an energetic way to produce biohydrogen.</p></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"11 ","pages":"Article 100093"},"PeriodicalIF":12.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916122000378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
An energy-efficient disintegration approach used to produce biohydrogen from marine macroalgae biomass (Chaetomorpha antennina) was demonstrated in this study. The suggested research aimed to explain the function of macroalgae disintegration by sonication (DS) and disintegration by a sonic surfactant (DSS) in biohydrogen production. Biosurfactant dosage (3 L/g TS), sonic intensity (50%) and disintegration duration (30 min) were found to be an optimum conditions for DSS with respect to dissoluted organics release (DOR). Volatile fatty acids (VFA) generation was higher in DSS (1845 mg/L) than DS (864 mg/L) When DS and DSS were compared, DSS had a substantially higher disintegration efficiency (DE) and biohydrogen yield (26%, 147 mL /gCOD) than DS (21.5%, 121 mL /gCOD). Net energy (NE) obtained in DSS (0.044 kWh/kg of biomass) was more than the DS (−0.02 kWh/kg of biomass). DSS had a higher energy ratio of 1.8, while DS had a lower energy ratio of 0.7. Overall, DSS was found to be an energetic way to produce biohydrogen.