Strain-enhanced electrical performance in stretchable semiconducting polymers

IF 15.5 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2023-08-01 DOI:10.1038/s41528-023-00269-w
Qing Zhou, Zhihui Wang, Yongkun Yan, Longfei Yang, Kai Chi, Yangjiang Wu, Wenhao Li, Zhiying Yi, Yunqi Liu, Yan Zhao
{"title":"Strain-enhanced electrical performance in stretchable semiconducting polymers","authors":"Qing Zhou, Zhihui Wang, Yongkun Yan, Longfei Yang, Kai Chi, Yangjiang Wu, Wenhao Li, Zhiying Yi, Yunqi Liu, Yan Zhao","doi":"10.1038/s41528-023-00269-w","DOIUrl":null,"url":null,"abstract":"Intrinsically stretchable semiconducting polymers are promising candidates for developing wearable electronics, but remain underdeveloped because the correlation between the microstructural evolution during stretching and the resultant charge transport is not clearly understood. In this study, we clarify the impact of molecular orientation on the dynamic performance of stretched semiconducting polymers, controlling molecular orientations via solvent-dependent spin-coating. We found that strain-enhanced electrical performance is feasible by quelling disorders within the face-on-packed aggregates. Strain facilitates 3D ordering in face-on-packed films, but increase the π-π orientation disorders and lamellar dislocation in the edge-on analogue, which contribute inversely to the charge transport. Consequently, the face-on samples maintain strain-resistant energetic disorder and a 1.5× increase in on-current, achieving a 10-times-higher retention than the edge-on analogue upon 100% strain. Furthermore, we developed a reliable way for measuring the photoelectrical stretchability of semiconducting polymer. This study contributes to developing high-performance stretchable semiconducting polymers.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":15.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00269-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00269-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically stretchable semiconducting polymers are promising candidates for developing wearable electronics, but remain underdeveloped because the correlation between the microstructural evolution during stretching and the resultant charge transport is not clearly understood. In this study, we clarify the impact of molecular orientation on the dynamic performance of stretched semiconducting polymers, controlling molecular orientations via solvent-dependent spin-coating. We found that strain-enhanced electrical performance is feasible by quelling disorders within the face-on-packed aggregates. Strain facilitates 3D ordering in face-on-packed films, but increase the π-π orientation disorders and lamellar dislocation in the edge-on analogue, which contribute inversely to the charge transport. Consequently, the face-on samples maintain strain-resistant energetic disorder and a 1.5× increase in on-current, achieving a 10-times-higher retention than the edge-on analogue upon 100% strain. Furthermore, we developed a reliable way for measuring the photoelectrical stretchability of semiconducting polymer. This study contributes to developing high-performance stretchable semiconducting polymers.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可拉伸半导体聚合物的应变增强电性能
本征可拉伸半导体聚合物是开发可穿戴电子设备的理想候选材料,但由于拉伸过程中的微结构演变与由此产生的电荷传输之间的相关性尚不清楚,因此其开发程度仍然很低。在本研究中,我们通过依赖溶剂的旋涂来控制分子取向,从而阐明了分子取向对拉伸半导体聚合物动态性能的影响。我们发现,通过平息面上堆积聚合体内部的紊乱,应变增强电性能是可行的。应变可促进面上堆积薄膜的三维有序,但会增加边上类似物中的π-π取向紊乱和层状位错,从而对电荷传输产生反作用。因此,面朝上样品保持了抗应变的能量紊乱,导通电流增加了 1.5 倍,在 100% 应变时的保持率是边朝上类似物的 10 倍。此外,我们还开发了一种测量半导体聚合物光电拉伸性的可靠方法。这项研究有助于开发高性能可拉伸半导体聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
A low-voltage three-state flexible tunable bandpass filter using organic electrochemical transistors for 5G NR n79 and Wi-Fi 6E applications Spiderweb-inspired flextensional transduction enables giant piezoelectric response for monitoring imperceptible biomechanical signals A multimodal framework for fatigue driving detection via feature fusion of vision and tactile information Phytic acid-assisted low-temperature carbonization of jute fabric for high-performance flexible pressure sensors Magnetically controllable battery-free multifunctional ingestible and versatile smart e-pill
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1