Qing Zhou, Zhihui Wang, Yongkun Yan, Longfei Yang, Kai Chi, Yangjiang Wu, Wenhao Li, Zhiying Yi, Yunqi Liu, Yan Zhao
{"title":"Strain-enhanced electrical performance in stretchable semiconducting polymers","authors":"Qing Zhou, Zhihui Wang, Yongkun Yan, Longfei Yang, Kai Chi, Yangjiang Wu, Wenhao Li, Zhiying Yi, Yunqi Liu, Yan Zhao","doi":"10.1038/s41528-023-00269-w","DOIUrl":null,"url":null,"abstract":"Intrinsically stretchable semiconducting polymers are promising candidates for developing wearable electronics, but remain underdeveloped because the correlation between the microstructural evolution during stretching and the resultant charge transport is not clearly understood. In this study, we clarify the impact of molecular orientation on the dynamic performance of stretched semiconducting polymers, controlling molecular orientations via solvent-dependent spin-coating. We found that strain-enhanced electrical performance is feasible by quelling disorders within the face-on-packed aggregates. Strain facilitates 3D ordering in face-on-packed films, but increase the π-π orientation disorders and lamellar dislocation in the edge-on analogue, which contribute inversely to the charge transport. Consequently, the face-on samples maintain strain-resistant energetic disorder and a 1.5× increase in on-current, achieving a 10-times-higher retention than the edge-on analogue upon 100% strain. Furthermore, we developed a reliable way for measuring the photoelectrical stretchability of semiconducting polymer. This study contributes to developing high-performance stretchable semiconducting polymers.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-10"},"PeriodicalIF":12.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00269-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00269-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Intrinsically stretchable semiconducting polymers are promising candidates for developing wearable electronics, but remain underdeveloped because the correlation between the microstructural evolution during stretching and the resultant charge transport is not clearly understood. In this study, we clarify the impact of molecular orientation on the dynamic performance of stretched semiconducting polymers, controlling molecular orientations via solvent-dependent spin-coating. We found that strain-enhanced electrical performance is feasible by quelling disorders within the face-on-packed aggregates. Strain facilitates 3D ordering in face-on-packed films, but increase the π-π orientation disorders and lamellar dislocation in the edge-on analogue, which contribute inversely to the charge transport. Consequently, the face-on samples maintain strain-resistant energetic disorder and a 1.5× increase in on-current, achieving a 10-times-higher retention than the edge-on analogue upon 100% strain. Furthermore, we developed a reliable way for measuring the photoelectrical stretchability of semiconducting polymer. This study contributes to developing high-performance stretchable semiconducting polymers.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.