Anthony G. Vorster, Paul H. Evangelista, Atticus E. L. Stovall, Seth Ex
{"title":"Variability and uncertainty in forest biomass estimates from the tree to landscape scale: the role of allometric equations","authors":"Anthony G. Vorster, Paul H. Evangelista, Atticus E. L. Stovall, Seth Ex","doi":"10.1186/s13021-020-00143-6","DOIUrl":null,"url":null,"abstract":"<p>Biomass maps are valuable tools for estimating forest carbon and forest planning. Individual-tree biomass estimates made using allometric equations are the foundation for these maps, yet the potentially-high uncertainty and bias associated with individual-tree estimates is commonly ignored in biomass map error. We developed allometric equations for lodgepole pine (<i>Pinus contorta)</i>, ponderosa pine (<i>P. ponderosa)</i>, and Douglas-fir (<i>Pseudotsuga menziesii)</i> in northern Colorado. Plot-level biomass estimates were combined with Landsat imagery and geomorphometric and climate layers to map aboveground tree biomass. We compared biomass estimates for individual trees, plots, and at the landscape-scale using our locally-developed allometric equations, nationwide equations applied across the U.S., and the Forest Inventory and Analysis Component Ratio Method (FIA-CRM). Total biomass map uncertainty was calculated by propagating errors from allometric equations and remote sensing model predictions. Two evaluation methods for the allometric equations were compared in the error propagation—errors calculated from the equation fit (equation-derived) and errors from an independent dataset of destructively-sampled trees (n?=?285).</p><p>Tree-scale error and bias of allometric equations varied dramatically between species, but local equations were generally most accurate. Depending on allometric equation and evaluation method, allometric uncertainty contributed 30–75% of total uncertainty, while remote sensing model prediction uncertainty contributed 25–70%. When using equation-derived allometric error, local equations had the lowest total uncertainty (root mean square error percent of the mean [% RMSE]?=?50%). This is likely due to low-sample size (10–20 trees sampled per species) allometric equations and evaluation not representing true variability in tree growth forms. When independently evaluated, allometric uncertainty outsized remote sensing model prediction uncertainty. Biomass across the 1.56 million ha study area and uncertainties were similar for local (2.1 billion Mg;?% RMSE?=?97%) and nationwide (2.2 billion Mg; ?% RMSE?=?94%) equations, while FIA-CRM estimates were lower and more uncertain (1.5 billion Mg; ?% RMSE?=?165%).</p><p>Allometric equations should be selected carefully since they drive substantial differences in bias and uncertainty. Biomass quantification efforts should consider contributions of allometric uncertainty to total uncertainty, at a minimum, and independently evaluate allometric equations when suitable data are available.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"15 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13021-020-00143-6","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-020-00143-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 48
Abstract
Biomass maps are valuable tools for estimating forest carbon and forest planning. Individual-tree biomass estimates made using allometric equations are the foundation for these maps, yet the potentially-high uncertainty and bias associated with individual-tree estimates is commonly ignored in biomass map error. We developed allometric equations for lodgepole pine (Pinus contorta), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga menziesii) in northern Colorado. Plot-level biomass estimates were combined with Landsat imagery and geomorphometric and climate layers to map aboveground tree biomass. We compared biomass estimates for individual trees, plots, and at the landscape-scale using our locally-developed allometric equations, nationwide equations applied across the U.S., and the Forest Inventory and Analysis Component Ratio Method (FIA-CRM). Total biomass map uncertainty was calculated by propagating errors from allometric equations and remote sensing model predictions. Two evaluation methods for the allometric equations were compared in the error propagation—errors calculated from the equation fit (equation-derived) and errors from an independent dataset of destructively-sampled trees (n?=?285).
Tree-scale error and bias of allometric equations varied dramatically between species, but local equations were generally most accurate. Depending on allometric equation and evaluation method, allometric uncertainty contributed 30–75% of total uncertainty, while remote sensing model prediction uncertainty contributed 25–70%. When using equation-derived allometric error, local equations had the lowest total uncertainty (root mean square error percent of the mean [% RMSE]?=?50%). This is likely due to low-sample size (10–20 trees sampled per species) allometric equations and evaluation not representing true variability in tree growth forms. When independently evaluated, allometric uncertainty outsized remote sensing model prediction uncertainty. Biomass across the 1.56 million ha study area and uncertainties were similar for local (2.1 billion Mg;?% RMSE?=?97%) and nationwide (2.2 billion Mg; ?% RMSE?=?94%) equations, while FIA-CRM estimates were lower and more uncertain (1.5 billion Mg; ?% RMSE?=?165%).
Allometric equations should be selected carefully since they drive substantial differences in bias and uncertainty. Biomass quantification efforts should consider contributions of allometric uncertainty to total uncertainty, at a minimum, and independently evaluate allometric equations when suitable data are available.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.