Terrestrial gravity fluctuations

IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Living Reviews in Relativity Pub Date : 2019-10-14 DOI:10.1007/s41114-019-0022-2
Jan Harms
{"title":"Terrestrial gravity fluctuations","authors":"Jan Harms","doi":"10.1007/s41114-019-0022-2","DOIUrl":null,"url":null,"abstract":"<p>Terrestrial gravity fluctuations are a target of scientific studies in a variety of fields within geophysics and fundamental-physics experiments involving gravity such as the observation of gravitational waves. In geophysics, these fluctuations are typically considered as signal that carries information about processes such as fault ruptures and atmospheric density perturbations. In fundamental-physics experiments, it appears as environmental noise, which needs to be avoided or mitigated. This article reviews the current state-of-the-art of modeling high-frequency terrestrial gravity fluctuations and of gravity-noise mitigation strategies. It hereby focuses on frequencies above about 50?mHz, which allows us to simplify models of atmospheric gravity perturbations (beyond Brunt–V?is?l? regime) and it guarantees as well that gravitational forces on elastic media can be treated as perturbation. Extensive studies have been carried out over the past two decades to model contributions from seismic and atmospheric fields especially by the gravitational-wave community. While terrestrial gravity fluctuations above 50?mHz have not been observed conclusively yet, sensitivity of instruments for geophysical observations and of gravitational-wave detectors is improving, and we can expect first observations in the coming years. The next challenges include the design of gravity-noise mitigation systems to be implemented in current gravitational-wave detectors, and further improvement of models for future gravitational-wave detectors where terrestrial gravity noise will play a more important role. Also, many aspects of the recent proposition to use a new generation of gravity sensors to improve real-time earthquake early-warning systems still require detailed analyses.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":null,"pages":null},"PeriodicalIF":26.3000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41114-019-0022-2","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Relativity","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41114-019-0022-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 36

Abstract

Terrestrial gravity fluctuations are a target of scientific studies in a variety of fields within geophysics and fundamental-physics experiments involving gravity such as the observation of gravitational waves. In geophysics, these fluctuations are typically considered as signal that carries information about processes such as fault ruptures and atmospheric density perturbations. In fundamental-physics experiments, it appears as environmental noise, which needs to be avoided or mitigated. This article reviews the current state-of-the-art of modeling high-frequency terrestrial gravity fluctuations and of gravity-noise mitigation strategies. It hereby focuses on frequencies above about 50?mHz, which allows us to simplify models of atmospheric gravity perturbations (beyond Brunt–V?is?l? regime) and it guarantees as well that gravitational forces on elastic media can be treated as perturbation. Extensive studies have been carried out over the past two decades to model contributions from seismic and atmospheric fields especially by the gravitational-wave community. While terrestrial gravity fluctuations above 50?mHz have not been observed conclusively yet, sensitivity of instruments for geophysical observations and of gravitational-wave detectors is improving, and we can expect first observations in the coming years. The next challenges include the design of gravity-noise mitigation systems to be implemented in current gravitational-wave detectors, and further improvement of models for future gravitational-wave detectors where terrestrial gravity noise will play a more important role. Also, many aspects of the recent proposition to use a new generation of gravity sensors to improve real-time earthquake early-warning systems still require detailed analyses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地球重力波动
在涉及重力的地球物理和基础物理实验(如引力波观测)的各个领域,地球重力波动是科学研究的目标。在地球物理学中,这些波动通常被认为是携带有关断层破裂和大气密度扰动等过程信息的信号。在基础物理实验中,它表现为环境噪声,需要加以避免或减轻。本文综述了高频地面重力波动建模和重力噪声缓解策略的最新进展。它聚焦在频率高于50的地方?这使我们能够简化大气重力扰动模型(超过Brunt-V ?is?l?)状态),它也保证了弹性介质上的引力可以被看作扰动。在过去的二十年中进行了广泛的研究,以模拟地震和大气场的贡献,特别是引力波界的贡献。而地球重力波动超过50?兆赫还没有得到最终的观测,地球物理观测仪器和引力波探测器的灵敏度正在提高,我们可以期待在未来几年的第一次观测。接下来的挑战包括设计用于当前引力波探测器的重力噪声缓解系统,以及进一步改进未来引力波探测器的模型,在未来引力波探测器中,地球重力噪声将发挥更重要的作用。此外,最近提出的使用新一代重力传感器来改进实时地震预警系统的许多方面仍需要详细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Living Reviews in Relativity
Living Reviews in Relativity 物理-物理:粒子与场物理
CiteScore
69.90
自引率
0.70%
发文量
0
审稿时长
20 weeks
期刊介绍: Living Reviews in Relativity is a peer-reviewed, platinum open-access journal that publishes reviews of research across all areas of relativity. Directed towards the scientific community at or above the graduate-student level, articles are solicited from leading authorities and provide critical assessments of current research. They offer annotated insights into key literature and describe available resources, maintaining an up-to-date suite of high-quality reviews, thus embodying the "living" aspect of the journal's title. Serving as a valuable tool for the scientific community, Living Reviews in Relativity is often the first stop for researchers seeking information on current work in relativity. Written by experts, the reviews cite, explain, and assess the most relevant resources in a given field, evaluating existing work and suggesting areas for further research. Attracting readers from the entire relativity community, the journal is useful for graduate students conducting literature surveys, researchers seeking the latest results in unfamiliar fields, and lecturers in need of information and visual materials for presentations at all levels.
期刊最新文献
Gravity experiments with radio pulsars Post-Newtonian theory for gravitational waves Theoretical and experimental constraints for the equation of state of dense and hot matter Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries Testing theories of gravity with planetary ephemerides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1