Chuyi Wang, Marlies Nitschke, J. Wannop, D. Stefanyshyn, Tobias Luckfiel, H. Schlarb, A. Koelewijn
{"title":"Prediction of the effect of stack height on running biomechanics using optimal control simulation","authors":"Chuyi Wang, Marlies Nitschke, J. Wannop, D. Stefanyshyn, Tobias Luckfiel, H. Schlarb, A. Koelewijn","doi":"10.1080/19424280.2023.2199295","DOIUrl":null,"url":null,"abstract":"Stack height is an important feature of running shoes, defined as the thickness of material separating the foot from the ground (Esculier et al., 2015). However, the effect of stack heights on running biomechanics has only recently been investigated systematically (Barrons et al., 2023). Compared to human testing, virtual testing with musculoskeletal simulation can provide biomechanical insights with fewer study participants and prototypes (Dorschky et al., 2019). So far, these studies have been performed only retrospectively, meaning that the desired answer was known at the time of virtual study. In this work, we studied the effect of stack height in dependently in a virtual study and a human experiment, to investigate if we can accurately predict the effect of stack height in a virtual study.","PeriodicalId":45905,"journal":{"name":"Footwear Science","volume":"15 1","pages":"S78 - S79"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Footwear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19424280.2023.2199295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stack height is an important feature of running shoes, defined as the thickness of material separating the foot from the ground (Esculier et al., 2015). However, the effect of stack heights on running biomechanics has only recently been investigated systematically (Barrons et al., 2023). Compared to human testing, virtual testing with musculoskeletal simulation can provide biomechanical insights with fewer study participants and prototypes (Dorschky et al., 2019). So far, these studies have been performed only retrospectively, meaning that the desired answer was known at the time of virtual study. In this work, we studied the effect of stack height in dependently in a virtual study and a human experiment, to investigate if we can accurately predict the effect of stack height in a virtual study.