Random projections for Linear Programming: an improved retrieval phase

Q2 Mathematics Journal of Experimental Algorithmics Pub Date : 2023-08-28 DOI:10.1145/3617506
Leo Liberti, Benedetto Manca, Pierre-Louis Poirion
{"title":"Random projections for Linear Programming: an improved retrieval phase","authors":"Leo Liberti, Benedetto Manca, Pierre-Louis Poirion","doi":"10.1145/3617506","DOIUrl":null,"url":null,"abstract":"One way to solve very large linear programs in standard form is to apply a random projection to the constraints, then solve the projected linear program [63]. This will yield a guaranteed bound on the optimal value, as well as a solution to the projected linear program. The process of constructing an approximate solution of the original linear program is called solution retrieval. We improve theoretical bounds on the approximation error of the retrieved solution obtained as in [42], and propose an improved retrieval method based on alternating projections. We show empirical results illustrating the practical benefits of the new approach.","PeriodicalId":53707,"journal":{"name":"Journal of Experimental Algorithmics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Algorithmics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

One way to solve very large linear programs in standard form is to apply a random projection to the constraints, then solve the projected linear program [63]. This will yield a guaranteed bound on the optimal value, as well as a solution to the projected linear program. The process of constructing an approximate solution of the original linear program is called solution retrieval. We improve theoretical bounds on the approximation error of the retrieved solution obtained as in [42], and propose an improved retrieval method based on alternating projections. We show empirical results illustrating the practical benefits of the new approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性规划的随机投影:一个改进的检索阶段
求解标准形式的大型线性规划的一种方法是将随机投影应用于约束,然后求解投影的线性规划[63]。这将产生最优值的保证界,以及投影线性规划的解。构造原始线性规划的近似解的过程称为解检索。我们改进了[42]中获得的检索解的近似误差的理论界,并提出了一种基于交替投影的改进检索方法。我们展示了实证结果,说明了新方法的实际效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Algorithmics
Journal of Experimental Algorithmics Mathematics-Theoretical Computer Science
CiteScore
3.10
自引率
0.00%
发文量
29
期刊介绍: The ACM JEA is a high-quality, refereed, archival journal devoted to the study of discrete algorithms and data structures through a combination of experimentation and classical analysis and design techniques. It focuses on the following areas in algorithms and data structures: ■combinatorial optimization ■computational biology ■computational geometry ■graph manipulation ■graphics ■heuristics ■network design ■parallel processing ■routing and scheduling ■searching and sorting ■VLSI design
期刊最新文献
Random projections for Linear Programming: an improved retrieval phase SAT-Boosted Tabu Search for Coloring Massive Graphs An Experimental Evaluation of Semidefinite Programming and Spectral Algorithms for Max Cut A constructive heuristic for the uniform capacitated vertex k-center problem Algorithms for Efficiently Computing Structural Anonymity in Complex Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1