Deep learning and multiwavelength fluorescence imaging for cleanliness assessment and disinfection in Food Services

H. Gorji, J. V. Van Kessel, Bradd J. Haley, Kaylee Husarik, J. Sonnier, S. Shahabi, H. K. Zadeh, D. Chan, J. Qin, I. Baek, M. Kim, A. Akhbardeh, Mona Sohrabi, Brick Kerge, N. Mackinnon, F. Vasefi, K. Tavakolian
{"title":"Deep learning and multiwavelength fluorescence imaging for cleanliness assessment and disinfection in Food Services","authors":"H. Gorji, J. V. Van Kessel, Bradd J. Haley, Kaylee Husarik, J. Sonnier, S. Shahabi, H. K. Zadeh, D. Chan, J. Qin, I. Baek, M. Kim, A. Akhbardeh, Mona Sohrabi, Brick Kerge, N. Mackinnon, F. Vasefi, K. Tavakolian","doi":"10.3389/fsens.2022.977770","DOIUrl":null,"url":null,"abstract":"Precise, reliable, and speedy contamination detection and disinfection is an ongoing challenge for the food-service industry. Contamination in food-related services can cause foodborne illness, endangering customers and jeopardizing provider reputations. Fluorescence imaging has been shown to be capable of identifying organic residues and biofilms that can host pathogens. We use new fluorescence imaging technology, applying Xception and DeepLabv3+ deep learning algorithms to identify and segment contaminated areas in images of equipment and surfaces. Deep learning models demonstrated a 98.78% accuracy for differentiation between clean and contaminated frames on various surfaces and resulted in an intersection over union (IoU) score of 95.13% for the segmentation of contamination. The portable imaging system’s intrinsic disinfection capability was evaluated on S. enterica, E. coli, and L. monocytogenes, resulting in up to 8-log reductions in under 5 s. Results showed that fluorescence imaging with deep learning algorithms could help assure safety and cleanliness in the food-service industry.","PeriodicalId":93754,"journal":{"name":"Frontiers in sensors","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsens.2022.977770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Precise, reliable, and speedy contamination detection and disinfection is an ongoing challenge for the food-service industry. Contamination in food-related services can cause foodborne illness, endangering customers and jeopardizing provider reputations. Fluorescence imaging has been shown to be capable of identifying organic residues and biofilms that can host pathogens. We use new fluorescence imaging technology, applying Xception and DeepLabv3+ deep learning algorithms to identify and segment contaminated areas in images of equipment and surfaces. Deep learning models demonstrated a 98.78% accuracy for differentiation between clean and contaminated frames on various surfaces and resulted in an intersection over union (IoU) score of 95.13% for the segmentation of contamination. The portable imaging system’s intrinsic disinfection capability was evaluated on S. enterica, E. coli, and L. monocytogenes, resulting in up to 8-log reductions in under 5 s. Results showed that fluorescence imaging with deep learning algorithms could help assure safety and cleanliness in the food-service industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习和多波长荧光成像用于食品服务的清洁度评估和消毒
精确、可靠和快速的污染检测和消毒是食品服务行业面临的一个持续挑战。食品相关服务中的污染可导致食源性疾病,危及顾客并损害供应商声誉。荧光成像已被证明能够识别有机残留物和生物膜,可以宿主病原体。我们使用新的荧光成像技术,应用Xception和DeepLabv3+深度学习算法来识别和分割设备和表面图像中的污染区域。深度学习模型在各种表面上区分干净帧和污染帧的准确率为98.78%,并且在污染分割方面产生了95.13%的交集超过联合(IoU)分数。评估了便携式成像系统对肠链球菌、大肠杆菌和单核增生乳杆菌的固有消毒能力,结果在5秒内减少了8对数。结果表明,荧光成像与深度学习算法可以帮助确保食品服务行业的安全和清洁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Thought leaders in sensor research: volume 1 Electronic tongue made of gelatin self-supporting films on printed electrodes to detect lactose Learning control for body caudal undulation with soft sensory feedback Erratum: AI-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection Evaluation of a point-of-use device used for autoantibody analysis and its potential for following microcystin leucine-arginine exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1