{"title":"New methods for numerical evaluation of ultra-high degree and order associated Legendre functions","authors":"Mehdi Goli, Ismael Foroughi, Pavel Novák","doi":"10.1007/s11200-022-0830-9","DOIUrl":null,"url":null,"abstract":"<div><p>We improve the precision and computation speed of the fully-normalized associated Legendre functions (fnALFs) for ultra-high degrees and orders of spherical harmonic transforms. We take advantage of their numerical behaviour of and propose two new methods for solving an underflow/overflow problem in their calculation. We specifically discuss the application of the two methods in the fixed-order increasing-degree recursion computation technique. The first method uses successive ratios of fnALFs and the second method, called the Midway method, starts iteration from tiny initial values, which are still in the range of the IEEE double-precision environment, rather than from sectorial fnALFs. The underflow/overflow problem in the successive ratio method is handled by using a logarithm-based method and the extended range arithmetic. We validate both methods using numerical tests and compare their results with the X-number method in terms of precision, stability, and speed. The results show that the relative precision of the proposed methods is better than 10<sup>−9</sup> for the maximum degree of 100000, compared to results derived by the high precision Wolfram’s Mathematica software. Average CPU times required for evaluation of fnALFs over different latitudes demonstrate that the two proposed methods are faster by about 10–30% and 20–90% with respect to the X-number method for the maximum degree in the range of 50–65000.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"66 3-4","pages":"81 - 97"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11200-022-0830-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-022-0830-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We improve the precision and computation speed of the fully-normalized associated Legendre functions (fnALFs) for ultra-high degrees and orders of spherical harmonic transforms. We take advantage of their numerical behaviour of and propose two new methods for solving an underflow/overflow problem in their calculation. We specifically discuss the application of the two methods in the fixed-order increasing-degree recursion computation technique. The first method uses successive ratios of fnALFs and the second method, called the Midway method, starts iteration from tiny initial values, which are still in the range of the IEEE double-precision environment, rather than from sectorial fnALFs. The underflow/overflow problem in the successive ratio method is handled by using a logarithm-based method and the extended range arithmetic. We validate both methods using numerical tests and compare their results with the X-number method in terms of precision, stability, and speed. The results show that the relative precision of the proposed methods is better than 10−9 for the maximum degree of 100000, compared to results derived by the high precision Wolfram’s Mathematica software. Average CPU times required for evaluation of fnALFs over different latitudes demonstrate that the two proposed methods are faster by about 10–30% and 20–90% with respect to the X-number method for the maximum degree in the range of 50–65000.
期刊介绍:
Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.