A pilot project of TESS equipped with two models of encapsulation for nano-enhanced organic PCMs

IF 2.1 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Building Energy Research Pub Date : 2022-09-03 DOI:10.1080/17512549.2022.2079001
Pouyan Alaei, B. Ghasemi, A. Raisi, A. Torabi
{"title":"A pilot project of TESS equipped with two models of encapsulation for nano-enhanced organic PCMs","authors":"Pouyan Alaei, B. Ghasemi, A. Raisi, A. Torabi","doi":"10.1080/17512549.2022.2079001","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n The unique thermal energy storage system (TESS) as an auxiliary system of solar water heater has a critical part to demonstration in preserving and efficiently utilizing energy, resolving demand-supply mismatches, and boosting the efficiency of energy systems. In this research, a suitable Nano enhanced-Composite Phase Change Material (NCPCM) was prepared to utilize in two model of metal cylinders. First of all, an experimental test for determination of melting point has been investigated by temperature variation test (TVT) method for NCPCM based on paraffin component. Then, two nanomaterial types (TiO2 and CuO) mixed at 50%/50% with two concentrations (0.6% and 0.12%) were dispersed with slack paraffin to provide a total of four experiments to compare the average temperature evolution and exergy efficiency. A theoretical framework for exergy analysis give away that use of nano composites in PCMs will improve efficiency rather than a single nanomaterial. However, to assess capability of this system to integrate with solar water heater, if there is no solar radiation limitation, NCPCM with 1.2% wt. will be a better choice with higher cylinders diameter (HD-Cylinders). Neverthless, for climates with limited time in storage energy, NCPCM with 1.2% wt. and lower cylinders diameter (LD-Cylinders) is our best suggestion for maximum efficiency that can be used during the peak solar energy period. Therefore, by considering NCPCM and integrating this novel study with solar technologies as a reliable heat source, outline is an excellent way for saving energy consumption in buildings at any remote area.","PeriodicalId":46184,"journal":{"name":"Advances in Building Energy Research","volume":"16 1","pages":"643 - 668"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Building Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17512549.2022.2079001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The unique thermal energy storage system (TESS) as an auxiliary system of solar water heater has a critical part to demonstration in preserving and efficiently utilizing energy, resolving demand-supply mismatches, and boosting the efficiency of energy systems. In this research, a suitable Nano enhanced-Composite Phase Change Material (NCPCM) was prepared to utilize in two model of metal cylinders. First of all, an experimental test for determination of melting point has been investigated by temperature variation test (TVT) method for NCPCM based on paraffin component. Then, two nanomaterial types (TiO2 and CuO) mixed at 50%/50% with two concentrations (0.6% and 0.12%) were dispersed with slack paraffin to provide a total of four experiments to compare the average temperature evolution and exergy efficiency. A theoretical framework for exergy analysis give away that use of nano composites in PCMs will improve efficiency rather than a single nanomaterial. However, to assess capability of this system to integrate with solar water heater, if there is no solar radiation limitation, NCPCM with 1.2% wt. will be a better choice with higher cylinders diameter (HD-Cylinders). Neverthless, for climates with limited time in storage energy, NCPCM with 1.2% wt. and lower cylinders diameter (LD-Cylinders) is our best suggestion for maximum efficiency that can be used during the peak solar energy period. Therefore, by considering NCPCM and integrating this novel study with solar technologies as a reliable heat source, outline is an excellent way for saving energy consumption in buildings at any remote area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TESS的试点项目配备了两种模型的纳米增强有机PCMs封装
摘要:独特的储能系统(TESS)作为太阳能热水器的辅助系统,在节约和高效利用能源、解决供需不匹配、提高能源系统效率方面具有重要的示范作用。本研究制备了一种合适的纳米增强复合相变材料(NCPCM),用于两种金属圆柱体模型。首先,采用温度变化试验(TVT)法研究了基于石蜡组分的NCPCM熔点测定的实验方法。然后,将两种纳米材料(TiO2和CuO)以50%/50%的混合浓度(0.6%和0.12%)分散在松散石蜡中,共进行4次实验,比较平均温度演变和火用效率。用能分析的理论框架表明,在pcm中使用纳米复合材料比使用单一纳米材料更能提高效率。但是,为了评估该系统与太阳能热水器的集成能力,在没有太阳辐射限制的情况下,采用更高的筒径(HD-Cylinders), 1.2% wt的NCPCM将是更好的选择。然而,对于储存能量时间有限的气候,我们建议在太阳能高峰期使用具有1.2% wt.和较低圆柱体直径(ld -圆柱体)的NCPCM,以达到最高效率。因此,通过考虑NCPCM并将这项新研究与太阳能技术作为可靠的热源相结合,outline是在任何偏远地区节省建筑能耗的绝佳方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Building Energy Research
Advances in Building Energy Research CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
4.80
自引率
5.00%
发文量
11
期刊最新文献
Numerical study on thermal performance of a building design integrating two passive Trombe walls Impact of courtyard on indoor thermal environment in vernacular row houses of warm and humid climate: case study of Kanyakumari, Tamil Nadu Capillary sorption, thermo physical characterizations and simulation study of an eco-friendly building material reinforced with Chamarrops humilis fibres Numerical investigation of indoor thermal comfort and air quality for an office equipped with corner impinging jet ventilation Research on the thermal environment in a climate chamber with different high-temperature combinations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1