{"title":"Silk sericin-based biomaterials shine in food and pharmaceutical industries","authors":"Chao Yang , Liang Yao , Lei Zhang","doi":"10.1016/j.smaim.2023.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>Silk sericin (SS) is a byproduct of the silk production process that consists of 18 amino acids and numerous polar groups. SS has a range of unique physical, chemical, and biological properties, such as mechanical strength, antioxidant activity, pH responsiveness, low immunogenicity, biocompatibility, and the ability to promote cell proliferation. These properties make SS useful in various fields, including food and biomedicine. It can also be easily modified into biomaterials through cross-linking, copolymerization, and combination with other polymers. This review summarizes the potential applications of SS-based biomaterials in the food and biomedicine industries, including as food additives, food packaging, <em>in vitro</em>/<em>vivo</em> monitoring, drug delivery systems, and wound healing. In addition, the future development possibilities of SS or SS-based biomaterials are also discussed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10
Abstract
Silk sericin (SS) is a byproduct of the silk production process that consists of 18 amino acids and numerous polar groups. SS has a range of unique physical, chemical, and biological properties, such as mechanical strength, antioxidant activity, pH responsiveness, low immunogenicity, biocompatibility, and the ability to promote cell proliferation. These properties make SS useful in various fields, including food and biomedicine. It can also be easily modified into biomaterials through cross-linking, copolymerization, and combination with other polymers. This review summarizes the potential applications of SS-based biomaterials in the food and biomedicine industries, including as food additives, food packaging, in vitro/vivo monitoring, drug delivery systems, and wound healing. In addition, the future development possibilities of SS or SS-based biomaterials are also discussed.