Carbon-Based Synthesized Materials for CO2 Adsorption and Conversion: Its Potential for Carbon Recycling

IF 4.6 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Recycling Pub Date : 2023-06-21 DOI:10.3390/recycling8040053
Tuan Hoang, Suhaib A. Bandh, Fayaz A. Malla, Irteza Qayoom, S. Bashir, Suhail Bashir Peer, A. Halog
{"title":"Carbon-Based Synthesized Materials for CO2 Adsorption and Conversion: Its Potential for Carbon Recycling","authors":"Tuan Hoang, Suhaib A. Bandh, Fayaz A. Malla, Irteza Qayoom, S. Bashir, Suhail Bashir Peer, A. Halog","doi":"10.3390/recycling8040053","DOIUrl":null,"url":null,"abstract":"During the last half-century, the CO2 concentration in the world’s atmosphere has increased from 310 p.p.m. to over 380 p.p.m. This is due to the widespread usage of fossil fuels as a main source of energy. Modeling forecasts have shown that this trend will continue to rise and reducing CO2 emissions is a challenging task for multi-stakeholders, including research institutions. The UN Climate Change Conference in Glasgow (COP26) has stressed that stakeholders need to work together to achieve a NetZero target. Technologies involving absorbents for the capture of CO2 from a gas mixture are energy-intensive. Carbon adsorption and conversion (CAC) approaches have been gaining attention recently since these technologies can mitigate CO2 emissions. In this review, materials ranging from advanced carbon-based materials to natural resources-based materials will be reviewed. Adsorption and conversion capacities as well as the scalability possibility of these technologies for solving the CO2 emission problem will be investigated. The review, therefore, is timely and meaningful concerning the net zero emission targets set by countries and developmental organizations worldwide.","PeriodicalId":36729,"journal":{"name":"Recycling","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling8040053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During the last half-century, the CO2 concentration in the world’s atmosphere has increased from 310 p.p.m. to over 380 p.p.m. This is due to the widespread usage of fossil fuels as a main source of energy. Modeling forecasts have shown that this trend will continue to rise and reducing CO2 emissions is a challenging task for multi-stakeholders, including research institutions. The UN Climate Change Conference in Glasgow (COP26) has stressed that stakeholders need to work together to achieve a NetZero target. Technologies involving absorbents for the capture of CO2 from a gas mixture are energy-intensive. Carbon adsorption and conversion (CAC) approaches have been gaining attention recently since these technologies can mitigate CO2 emissions. In this review, materials ranging from advanced carbon-based materials to natural resources-based materials will be reviewed. Adsorption and conversion capacities as well as the scalability possibility of these technologies for solving the CO2 emission problem will be investigated. The review, therefore, is timely and meaningful concerning the net zero emission targets set by countries and developmental organizations worldwide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳基合成材料对二氧化碳的吸附和转化:碳循环利用的潜力
在过去的半个世纪里,世界大气中的二氧化碳浓度从下午310点上升到现在。到下午3点30分。这是由于化石燃料作为主要能源的广泛使用。模拟预测表明,这一趋势将继续上升,减少二氧化碳排放对包括研究机构在内的多方利益相关者来说是一项具有挑战性的任务。在格拉斯哥举行的联合国气候变化大会(COP26)强调,利益相关者需要共同努力实现零净目标。从气体混合物中捕获二氧化碳的吸收剂技术是能源密集型的。由于碳吸附和转化(CAC)技术可以减少二氧化碳的排放,因此最近受到了人们的关注。本文将对从先进碳基材料到自然资源基材料等材料进行综述。将研究这些技术在解决二氧化碳排放问题方面的吸附和转化能力以及可扩展性的可能性。因此,对世界各国和发展组织制定的净零排放目标进行审查是及时和有意义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Recycling
Recycling Environmental Science-Management, Monitoring, Policy and Law
CiteScore
6.80
自引率
7.00%
发文量
84
审稿时长
11 weeks
期刊最新文献
The Potential Material Flow of WEEE in a Data-Constrained Environment—The Case of Jordan Improvement of Thermal Protection in Recycled Polyolefins through Hybrid Mesoporous Silica–Antioxidant Particles Reforming Construction Waste Management for Circular Economy in Kazakhstan: A Cost–Benefit Analysis of Upgrading Construction and Demolition Waste Recycling Centres Sustainable WPC Production: A Novel Method Using Recycled High-Density Polyethylene and Wood Veneer Understanding the State Agency Policies toward RAP Usage in the United States: State of Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1