Artificial Intelligence Algorithms for Collaborative Book Recommender Systems

Q1 Decision Sciences Annals of Data Science Pub Date : 2023-06-08 DOI:10.1007/s40745-023-00474-4
Clemens Tegetmeier, Arne Johannssen, Nataliya Chukhrova
{"title":"Artificial Intelligence Algorithms for Collaborative Book Recommender Systems","authors":"Clemens Tegetmeier,&nbsp;Arne Johannssen,&nbsp;Nataliya Chukhrova","doi":"10.1007/s40745-023-00474-4","DOIUrl":null,"url":null,"abstract":"<div><p>Book recommender systems provide personalized recommendations of books to users based on their previous searches or purchases. As online trading of books has become increasingly important in recent years, artificial intelligence (AI) algorithms are needed to recommend suitable books to users and encourage them to make purchasing decisions in the short and the long run. In this paper, we consider AI algorithms for so called collaborative book recommender systems, especially the matrix factorization algorithm using the stochastic gradient descent method and the book-based <i>k</i>-nearest-neighbor algorithm. We perform a comprehensive case study based on the Book-Crossing benchmark data set, and implement various variants of both AI algorithms to predict unknown book ratings and to recommend books to individual users based on the highest predicted ratings. This study aims to evaluate the quality of the implemented methods in recommending books by using selected evaluation metrics for AI algorithms.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40745-023-00474-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00474-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Book recommender systems provide personalized recommendations of books to users based on their previous searches or purchases. As online trading of books has become increasingly important in recent years, artificial intelligence (AI) algorithms are needed to recommend suitable books to users and encourage them to make purchasing decisions in the short and the long run. In this paper, we consider AI algorithms for so called collaborative book recommender systems, especially the matrix factorization algorithm using the stochastic gradient descent method and the book-based k-nearest-neighbor algorithm. We perform a comprehensive case study based on the Book-Crossing benchmark data set, and implement various variants of both AI algorithms to predict unknown book ratings and to recommend books to individual users based on the highest predicted ratings. This study aims to evaluate the quality of the implemented methods in recommending books by using selected evaluation metrics for AI algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同图书推荐系统的人工智能算法
图书推荐系统根据用户以往的搜索或购买情况,向用户提供个性化的图书推荐。近年来,图书在线交易变得越来越重要,因此需要人工智能(AI)算法向用户推荐合适的图书,并鼓励他们在短期和长期内做出购买决定。在本文中,我们考虑了适用于所谓协作式图书推荐系统的人工智能算法,特别是使用随机梯度下降法的矩阵因式分解算法和基于图书的 k-nearest-neighbor 算法。我们基于 Book-Crossing 基准数据集进行了全面的案例研究,并实施了这两种人工智能算法的各种变体,以预测未知图书评分,并根据最高预测评分向单个用户推荐图书。本研究旨在使用选定的人工智能算法评价指标,评估所实施方法在推荐图书方面的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
期刊最新文献
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis Kernel Method for Estimating Matusita Overlapping Coefficient Using Numerical Approximations Maximum Likelihood Estimation for Generalized Inflated Power Series Distributions Farm-Level Smart Crop Recommendation Framework Using Machine Learning Reaction Function for Financial Market Reacting to Events or Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1