Ag-Ni bimetallic film on CaF2 prism for high sensitive surface plasmon resonance sensor

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2021-09-30 DOI:10.4302/PLP.V13I3.1114
A. Nisha, P. Maheswari, S. Subanya, P. M. Anbarasan, K. B. Rajesh, Z. Jaroszewicz
{"title":"Ag-Ni bimetallic film on CaF2 prism for high sensitive surface plasmon resonance sensor","authors":"A. Nisha, P. Maheswari, S. Subanya, P. M. Anbarasan, K. B. Rajesh, Z. Jaroszewicz","doi":"10.4302/PLP.V13I3.1114","DOIUrl":null,"url":null,"abstract":"We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, \"Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis\", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, \"Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress\", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, \"Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films\", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, \"High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides\", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, \"Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance\", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, \"Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers\", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, \"Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings\", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, \"High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared\", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, \"Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index\", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, \"Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance\", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, \"Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer\", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, \"Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor\", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H. Ong, X. Yuan, Y. Tan, R. Irawan, X. Fang, L. Zhang, S. Tjin, \"Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide\", Lab Chip 7, 506 (2007). CrossRef X. Yuan, B. Ong, Y. Tan, D. Zhang, R. Irawan, S. Tjin, \"Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers\", J. Opt. A: Pure Appl. Opt. 8, 959, (2006). CrossRef M. Ghorbanpour, \"A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment\", J. Nanostruct, 3, 309, (2013). CrossRef Y. Chen, R.S. Zheng, D.G. Zhang, Y.H. Lu, P. Wang, H. Ming, Z.F. Luo, Q. Kan, \"Bimetallic chips for a surface plasmon resonance instrument\", Appl. Opt. 50, 387 (2011). CrossRef N.H.T. Tran, B.T. Phan, W.J. Yoon, S. Khym, H. Ju, \"Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves\", J. Electron. Mater. 46, 3654 (2017). CrossRef D. Nesterenko Z. Sekkat, \"Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions\", Plasmonics 8, 1585 (2013). CrossRef M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, \"Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.\", Appl. Opt. 24, 4493 (1985). CrossRef H. Ehrenreich, H.R. Philipp, D.J. Olechna, \"Optical Properties and Fermi Surface of Nickel\", Phys. Rev. 31, 2469 (1963). CrossRef S. Shukla, N.K. Sharma, V. Sajal, \"Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films\", Braz. J. Phys. 46, 288 (2016). CrossRef K. Shah, N.K. Sharma, AIP Conf. Proc. 2009, 020040 (2018). [23] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, \"Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni\", Opt. Commun. 463, 125337 (2020). CrossRef A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, \"Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)\", Opt. Quantum Electron. 51, 19 (2019). CrossRef M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, \"Improved Transition Metal Dichalcogenides-Based Surface Plasmon Resonance Biosensors\", Condens.Matter 4, 49, (2019). CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.P. Pellaux, T. Gresch, M. Fischer, J. Faist, \"Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range\", Opt. Express 17, 293 (2009). CrossRef M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang,T. Ning, X. Liu, C Li, W. Zhanga, B. Mana, \"Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film\", RSC Adv. 7, 47177 (2017). CrossRef P.K. Maharana, P. Padhy, R. Jha, \"On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene\", IEEE Photonics Technol. Lett. 25, 2156 (2013). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V13I3.1114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, "High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, "Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, "Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, "Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H. Ong, X. Yuan, Y. Tan, R. Irawan, X. Fang, L. Zhang, S. Tjin, "Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide", Lab Chip 7, 506 (2007). CrossRef X. Yuan, B. Ong, Y. Tan, D. Zhang, R. Irawan, S. Tjin, "Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers", J. Opt. A: Pure Appl. Opt. 8, 959, (2006). CrossRef M. Ghorbanpour, "A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment", J. Nanostruct, 3, 309, (2013). CrossRef Y. Chen, R.S. Zheng, D.G. Zhang, Y.H. Lu, P. Wang, H. Ming, Z.F. Luo, Q. Kan, "Bimetallic chips for a surface plasmon resonance instrument", Appl. Opt. 50, 387 (2011). CrossRef N.H.T. Tran, B.T. Phan, W.J. Yoon, S. Khym, H. Ju, "Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves", J. Electron. Mater. 46, 3654 (2017). CrossRef D. Nesterenko Z. Sekkat, "Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions", Plasmonics 8, 1585 (2013). CrossRef M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.", Appl. Opt. 24, 4493 (1985). CrossRef H. Ehrenreich, H.R. Philipp, D.J. Olechna, "Optical Properties and Fermi Surface of Nickel", Phys. Rev. 31, 2469 (1963). CrossRef S. Shukla, N.K. Sharma, V. Sajal, "Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films", Braz. J. Phys. 46, 288 (2016). CrossRef K. Shah, N.K. Sharma, AIP Conf. Proc. 2009, 020040 (2018). [23] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni", Opt. Commun. 463, 125337 (2020). CrossRef A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, "Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)", Opt. Quantum Electron. 51, 19 (2019). CrossRef M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, "Improved Transition Metal Dichalcogenides-Based Surface Plasmon Resonance Biosensors", Condens.Matter 4, 49, (2019). CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.P. Pellaux, T. Gresch, M. Fischer, J. Faist, "Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range", Opt. Express 17, 293 (2009). CrossRef M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang,T. Ning, X. Liu, C Li, W. Zhanga, B. Mana, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film", RSC Adv. 7, 47177 (2017). CrossRef P.K. Maharana, P. Padhy, R. Jha, "On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene", IEEE Photonics Technol. Lett. 25, 2156 (2013). CrossRef
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高灵敏度表面等离子体共振传感器的CaF2棱镜Ag-Ni双金属膜
我们提出了一种基于Kretschmann构型的表面等离子体共振(SPR)结构,该结构在CaF2棱镜上结合了贵金属(Ag)和磁性材料(Ni)的双金属层。基于传递矩阵理论进行了广泛的数值分析,以表征传感器响应,考虑灵敏度,半最大值全宽度和最小反射。值得注意的是,在适当优化双金属层厚度后,所提出的结构比其他竞争性的SPR结构具有一致的灵敏度增强。因此,我们认为该传感器可以为医学诊断、化学检查和生物检测提供新的平台。全文:PDF参考文献李志强,“基于平面光管的表面等离子体共振传感器的理论优化分析”,光学精密工程学报,1999,11(3)。[CrossRef]郝晓东,陈晓明,“表面等离子体共振生物传感器的研究进展”,电子工程学报,23,51(2007)。引用本文:林志强,姜丽,吴丽,郭军,戴晓霞,向勇,范东,“石墨烯覆盖Au-MoS - au薄膜表面等离子体共振生物传感器的调谐和灵敏度增强”,光子学报,8(6),4803308(2016)。CrossRef T. Srivastava, R. Jha, R. Das,“基于周期性多层波导的高性能双金属SPR传感器”,IEEE Photonics technology。左23(20),1448(2011)。陈晓明,“基于石墨烯的表面等离子体共振生物传感器的研究进展”,中国机械工程,2012,32(4)。CrossRef R. Verma, B.D. Gupta, R. Jha,“基于石墨烯和硅层的表面等离子体共振生物分子传感器的灵敏度增强”,光子学报,2004,16(2011)。CrossRef . Pockrand,“银表面的等离子体振荡”,science and technology。科学72,577(1978)。王晓明,王晓明,“基于表面等离子体共振的红外光谱传感器”,光学学报,34(6),749(2009)。CrossRef E.V. Alieva, V.N. Konopsky,“基于表面等离子体干涉测量的液体折射率变化生物传感器”,光学学报,1999,90(2004)。CrossRef s.a Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov,“基于表面等离子体共振的双金属层增强亲和传感器的灵敏度”,传感器2,62(2002)。吴世义,何厚平,“利用金-银换能层提高表面等离子体共振光学传感器的灵敏度”,电子器件学报,63(2002)。[CrossRef]王宝辉,袁晓明,张建军,吴宏辉,“双金属薄膜表面等离子体共振生物传感器的优化膜厚度研究”,光子学报,2004,28(2006)。[CrossRef]王宝辉,袁晓明,谭勇,Irawan R.,方新,张丽玲,金淑娟,“片上波导中两层金属薄膜诱导表面等离子体激元的荧光发射增强”,中国机械工程,2007,506。引用本文:袁新祥,王斌,谭勇,张德东,Irawan, ts .,“双金属层表面等离子体共振传感的灵敏度-稳定性优化”,J.光学,A:纯物理学报。选择8,959,(2006)。CrossRef M. Ghorbanpour,“一种用于表面等离子体共振分析的玻璃基板上高粘附金层的新方法:用银层取代中间层和最佳退火处理”,纳米结构,33,309,(2013)。陈艳,郑荣生,张东刚,卢永华,王鹏,明辉,罗志峰,阚强,“表面等离子体共振仪器的双金属芯片”,应用科学,光学学报,50,387(2011)。陈新涛,潘宝涛,尹文杰,周洪辉,“基于介质金属的表面等离子体共振材料的研究”,电子学报。材料,46,3654(2017)。CrossRef D. Nesterenko Z. Sekkat,“Au, Ag, Cu, Al表面等离子体传感器在紫外,可见光和红外区域的分辨率估计”,等离子体学报8,1585(2013)。M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry,“14种金属的红外和远红外光学性质:Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V和W.”,applied。选择24,4493(1985)。CrossRef H. Ehrenreich, H. r . Philipp, D.J. Olechna,“镍的光学性质和费米表面”,物理学报。Rev. 31,2469(1963)。CrossRef S. Shukla, N.K. Sharma, V. Sajal,“基于钴和镍薄膜的表面等离子体共振光纤传感器的理论研究”,中国光学学报。物理学报,46,288(2016)。王晓东,王晓东,王晓东,等。激光激光技术与应用研究进展,2009,40(2018)。[10] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A。 张晓明,张晓明,“基于双金属层的表面等离子体共振传感器的灵敏度增强研究”,光子学报,36(6),1237(2020)。CrossRef A. Nisha, P. Maheswari, P.M.Anbarasan, K.B. Rajesh, Z. Jaroszewicz,“覆盖贵金属和磁性材料(Ni)的二维材料表面等离子体共振传感器的灵敏度增强”,量子电子学报,51,19(2019)。陈晓明,陈晓明,陈晓明,“基于表面等离子体共振的生物传感器”,中国科学院学报(自然科学版)物质4,49,(2019)。CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. Pellaux, T. Gresch, M. Fischer, J. Faist,“表面等离子体共振传感器在中红外范围内检测CO2的增强灵敏度”,光子学报,17(2009)。交叉参考王明明,霍勇,蒋树生,张春春,杨春涛。刘晓霞,李超,张伟,马斌,“基于石墨烯- ws2杂化纳米结构和Au-Ag双金属薄膜的高灵敏度和高分辨率表面等离子体共振传感器的理论设计”,金属学报,7,(2017)P. k . Maharana, P. Padhy, R. Jha,“基于石墨烯的超稳定SPR生物传感器的场增强和性能研究”,IEEE Photonics technology。快报25,2156(2013)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1