Alejandro Rivera Palacios, Johana Andrea España, J. G. Gómez González, Guillermo Salazar Gutierrez, Diana Ávila Reyes, Paula Moreno, Angie Vanessa Lara Martinez, Mateo Aguirre-Flórez, Adrian Giraldo-Diaconeasa
{"title":"Mechanical power measurement during mechanical ventilation of SARS-CoV-2 critically ill patients. A cohort study","authors":"Alejandro Rivera Palacios, Johana Andrea España, J. G. Gómez González, Guillermo Salazar Gutierrez, Diana Ávila Reyes, Paula Moreno, Angie Vanessa Lara Martinez, Mateo Aguirre-Flórez, Adrian Giraldo-Diaconeasa","doi":"10.5554/22562087.e1037","DOIUrl":null,"url":null,"abstract":"Introduction: The ventilator-induced lung injury (VILI) depends on the amount of energy per minute transferred by the ventilator to the lung measured in Joules, which is called mechanical power. Mechanical power is a development variable probably associated with outcomes in ventilated patients. \nObjective: To describe the value of mechanical power in patients with SARS-CoV-2 infection and ventilated for other causes and its relationship between days of mechanical ventilation, length of stay in the intensive care unit (ICU), and mortality. \nMethods: A multicenter, analytical, observational cohort study was conducted in patients with SARS-CoV-2 infection who required invasive mechanical ventilation and patients ventilated for other causes for more than 24 hours. \nResults: The cohort included 91 patients on mechanical ventilation in three tertiary care centers in the city of Pereira, Colombia. The average value of the mechanical power found was 22.7 ± 1 Joules/min. In the subgroup of patients with SARS-CoV-2 infection, the value of mechanical power was higher 26.8 ± 9 than in the subgroup of patients without a diagnosis of SARS-CoV-2 infection 18.2 ± 1 (p <0.001). \nConclusion: Mechanical power is an important variable to consider during the monitoring of mechanical ventilation. This study found an average value of mechanical power of 22.7 ± 1 Joules/min, being higher in patients with SARS-CoV-2 infection related to longer days of mechanical ventilation and a longer stay in the ICU.","PeriodicalId":36529,"journal":{"name":"Colombian Journal of Anesthesiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colombian Journal of Anesthesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5554/22562087.e1037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The ventilator-induced lung injury (VILI) depends on the amount of energy per minute transferred by the ventilator to the lung measured in Joules, which is called mechanical power. Mechanical power is a development variable probably associated with outcomes in ventilated patients.
Objective: To describe the value of mechanical power in patients with SARS-CoV-2 infection and ventilated for other causes and its relationship between days of mechanical ventilation, length of stay in the intensive care unit (ICU), and mortality.
Methods: A multicenter, analytical, observational cohort study was conducted in patients with SARS-CoV-2 infection who required invasive mechanical ventilation and patients ventilated for other causes for more than 24 hours.
Results: The cohort included 91 patients on mechanical ventilation in three tertiary care centers in the city of Pereira, Colombia. The average value of the mechanical power found was 22.7 ± 1 Joules/min. In the subgroup of patients with SARS-CoV-2 infection, the value of mechanical power was higher 26.8 ± 9 than in the subgroup of patients without a diagnosis of SARS-CoV-2 infection 18.2 ± 1 (p <0.001).
Conclusion: Mechanical power is an important variable to consider during the monitoring of mechanical ventilation. This study found an average value of mechanical power of 22.7 ± 1 Joules/min, being higher in patients with SARS-CoV-2 infection related to longer days of mechanical ventilation and a longer stay in the ICU.