{"title":"Caliber fuzzy c-means algorithm applied for retinal blood vessel detection","authors":"G. Jeyaraman, Janakiraman Subbiah","doi":"10.1504/ijcaet.2021.10020685","DOIUrl":null,"url":null,"abstract":"Retinal blood vessel detection employs a vital role in finding of retinal diseases like diabetic retinopathy and glaucoma. This paper presents an innovative unsupervised retinal blood vessel detection technique. First step is to generate a vessel enhanced image, then using calibre fuzzy c-means (CFCM) technique, first cluster the retinal image; next the clustered image is passed to the canny edge operator and finally post process the retinal image. CFCM clustering method for blood vessel detection is based on the choice of the number of clusters value. By using CFCM clustering function, compute the cluster centre, which commonly divides the image into four clusters. The proposed technique is obviously forceful into the modification of fuzzy c-means with canny algorithm. The proposed algorithm accomplishes an accuracy of about 95% of retinal images from three datasets DRIVE, STARE, and CHASE_DB1.","PeriodicalId":38492,"journal":{"name":"International Journal of Computer Aided Engineering and Technology","volume":"13 1","pages":"306-324"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Aided Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcaet.2021.10020685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Retinal blood vessel detection employs a vital role in finding of retinal diseases like diabetic retinopathy and glaucoma. This paper presents an innovative unsupervised retinal blood vessel detection technique. First step is to generate a vessel enhanced image, then using calibre fuzzy c-means (CFCM) technique, first cluster the retinal image; next the clustered image is passed to the canny edge operator and finally post process the retinal image. CFCM clustering method for blood vessel detection is based on the choice of the number of clusters value. By using CFCM clustering function, compute the cluster centre, which commonly divides the image into four clusters. The proposed technique is obviously forceful into the modification of fuzzy c-means with canny algorithm. The proposed algorithm accomplishes an accuracy of about 95% of retinal images from three datasets DRIVE, STARE, and CHASE_DB1.
期刊介绍:
IJCAET is a journal of new knowledge, reporting research and applications which highlight the opportunities and limitations of computer aided engineering and technology in today''s lifecycle-oriented, knowledge-based era of production. Contributions that deal with both academic research and industrial practices are included. IJCAET is designed to be a multi-disciplinary, fully refereed and international journal.