Equations of state of clino- and orthoenstatite and phase relations in the MgSiO3 system at pressures up to 12 GPa and high temperatures

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2022-08-15 DOI:10.1007/s00269-022-01212-7
Tatiana S. Sokolova, Peter I. Dorogokupets, Alena I. Filippova
{"title":"Equations of state of clino- and orthoenstatite and phase relations in the MgSiO3 system at pressures up to 12 GPa and high temperatures","authors":"Tatiana S. Sokolova,&nbsp;Peter I. Dorogokupets,&nbsp;Alena I. Filippova","doi":"10.1007/s00269-022-01212-7","DOIUrl":null,"url":null,"abstract":"<div><p>The equations of state of MgSiO<sub>3</sub>-pyroxenes (low-pressure clinoenstatite, orthoenstatite and high-pressure clinoenstatite) are constructed using a thermodynamic model based on the Helmholtz free energy and optimization of known experimental measurements and calculated data for these minerals. The obtained equations of state allow us to calculate a full set of thermodynamic and thermoelastic properties as depending on <i>T–P</i> or <i>T–V</i> parameters. We offer open working MS Excel spreadsheets for calculations, which are a convenient tool for solving various user’s tasks. The phase relations in the MgSiO<sub>3</sub> system are calculated based on the estimated Gibbs energy for studied MgSiO<sub>3</sub>-pyroxenes and clarify other calculated data at pressures up to 12 GPa and temperatures up to 2000 K. The obtained orthoenstatite → high-pressure clinoenstatite phase boundary corresponds to the following equation <i>P</i>(GPa) = 0.0021 × <i>T</i>(K) + 4.2. The triple point of equilibrium is determined at 1100 K and 6.5 GPa. Isotropic compressional (<i>P</i>) and shear (<i>S</i>) wave velocities of orthoenstatite and high-pressure clinoenstatite at different pressures are calculated based on the obtained equations of state. The calculated jumps of <i>P</i>- and <i>S</i>-wave velocities of orthoenstatite → high-pressure clinoenstatite phase transition at a pressure of ~ 9 GPa are 0.7 and 5.1%, respectively. The calculated jump of the density of this phase transition at a pressure of 8 GPa, which corresponds to the depth of ~ 250 km, is 2.9%. These results are used to discuss the location of the seismic X-discontinuity at the depths of 250–340 km, which is associated with phase boundaries in enstatite.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01212-7.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01212-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

The equations of state of MgSiO3-pyroxenes (low-pressure clinoenstatite, orthoenstatite and high-pressure clinoenstatite) are constructed using a thermodynamic model based on the Helmholtz free energy and optimization of known experimental measurements and calculated data for these minerals. The obtained equations of state allow us to calculate a full set of thermodynamic and thermoelastic properties as depending on T–P or T–V parameters. We offer open working MS Excel spreadsheets for calculations, which are a convenient tool for solving various user’s tasks. The phase relations in the MgSiO3 system are calculated based on the estimated Gibbs energy for studied MgSiO3-pyroxenes and clarify other calculated data at pressures up to 12 GPa and temperatures up to 2000 K. The obtained orthoenstatite → high-pressure clinoenstatite phase boundary corresponds to the following equation P(GPa) = 0.0021 × T(K) + 4.2. The triple point of equilibrium is determined at 1100 K and 6.5 GPa. Isotropic compressional (P) and shear (S) wave velocities of orthoenstatite and high-pressure clinoenstatite at different pressures are calculated based on the obtained equations of state. The calculated jumps of P- and S-wave velocities of orthoenstatite → high-pressure clinoenstatite phase transition at a pressure of ~ 9 GPa are 0.7 and 5.1%, respectively. The calculated jump of the density of this phase transition at a pressure of 8 GPa, which corresponds to the depth of ~ 250 km, is 2.9%. These results are used to discuss the location of the seismic X-discontinuity at the depths of 250–340 km, which is associated with phase boundaries in enstatite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温下MgSiO3体系中斜长辉石和正长辉石的状态方程及相关系
利用基于亥姆霍兹自由能的热力学模型,并对已知实验测量值和计算数据进行优化,建立了mgsio3辉石矿(低压斜辉石、正辉石和高压斜辉石)的状态方程。得到的状态方程使我们能够根据T-P或T-V参数计算出一整套热力学和热弹性性质。我们提供开放的工作MS Excel电子表格计算,这是一个方便的工具,解决各种用户的任务。根据所研究的MgSiO3-辉石的估计吉布斯能量计算了MgSiO3体系中的相关系,并澄清了压力高达12 GPa和温度高达2000 K时的其他计算数据。得到的正长辉石→高压斜长辉石相界对应方程为:P(GPa) = 0.0021 × T(K) + 4.2。在1100 K和6.5 GPa时确定了三相平衡点。根据得到的状态方程,计算了正辉石和高压斜辉石在不同压力下的各向同性纵波速度和横波速度。在~ 9 GPa压力下,正长辉石→高压斜长辉石相变的纵波和横波速度跳变分别为0.7和5.1%。在压力为8 GPa时,对应深度为~ 250 km时,相变密度的跃变为2.9%。这些结果用于讨论250 ~ 340 km深度的地震x -不连续的位置,这与辉长岩的相界有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA High-pressure synthesis of rhenium carbide Re3C under megabar compression High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution High pressure behavior of K-cymrite (KAlSi3O8·H2O) crystal structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1