Overview of HPCAT and capabilities for studying minerals and various other materials at high-pressure conditions

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2022-08-15 DOI:10.1007/s00269-022-01209-2
Arunkumar Bommannavar, Paul Chow, Rich Ferry, Rostislav Hrubiak, Freda Humble, Curtis Kenney-Benson, Mingda Lv, Yue Meng, Changyong Park, Dmitry Popov, Eric Rod, Maddury Somayazulu, Guoyin Shen, Dean Smith, Jesse Smith, Yuming Xiao, Nenad Velisavljevic
{"title":"Overview of HPCAT and capabilities for studying minerals and various other materials at high-pressure conditions","authors":"Arunkumar Bommannavar,&nbsp;Paul Chow,&nbsp;Rich Ferry,&nbsp;Rostislav Hrubiak,&nbsp;Freda Humble,&nbsp;Curtis Kenney-Benson,&nbsp;Mingda Lv,&nbsp;Yue Meng,&nbsp;Changyong Park,&nbsp;Dmitry Popov,&nbsp;Eric Rod,&nbsp;Maddury Somayazulu,&nbsp;Guoyin Shen,&nbsp;Dean Smith,&nbsp;Jesse Smith,&nbsp;Yuming Xiao,&nbsp;Nenad Velisavljevic","doi":"10.1007/s00269-022-01209-2","DOIUrl":null,"url":null,"abstract":"<div><p>High-Pressure Collaborative Access Team (HPCAT) is a synchrotron-based facility located at the Advanced Photon Source (APS). With four online experimental stations and various offline capabilities, HPCAT is focused on providing synchrotron x-ray capabilities for high pressure and temperature research and supporting a broad user community. Overall, the array of online/offline capabilities is described, including some of the recent developments for remote user support and the concomitant impact of the current pandemic. General overview of work done at HPCAT and with a focus on some of the minerals relevant work and supporting capabilities is also discussed. With the impending APS-Upgrade (APS-U), there is a considerable effort within HPCAT to improve and add capabilities. These are summarized briefly for each of the end-stations.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"49 9","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-022-01209-2.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-022-01209-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

High-Pressure Collaborative Access Team (HPCAT) is a synchrotron-based facility located at the Advanced Photon Source (APS). With four online experimental stations and various offline capabilities, HPCAT is focused on providing synchrotron x-ray capabilities for high pressure and temperature research and supporting a broad user community. Overall, the array of online/offline capabilities is described, including some of the recent developments for remote user support and the concomitant impact of the current pandemic. General overview of work done at HPCAT and with a focus on some of the minerals relevant work and supporting capabilities is also discussed. With the impending APS-Upgrade (APS-U), there is a considerable effort within HPCAT to improve and add capabilities. These are summarized briefly for each of the end-stations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPCAT概述和在高压条件下研究矿物和各种其他材料的能力
高压协同访问小组(HPCAT)是位于先进光子源(APS)的同步加速器基础设施。HPCAT拥有四个在线实验站和各种离线功能,专注于为高压和高温研究提供同步加速器x射线功能,并支持广泛的用户社区。总体而言,介绍了一系列在线/离线能力,包括远程用户支持方面的一些最新发展以及当前大流行的伴随影响。还讨论了在HPCAT所做的工作的总体概况,重点是一些矿物的相关工作和支持能力。随着即将到来的APS-Upgrade (APS-U), HPCAT内部需要付出相当大的努力来改进和添加功能。对每个端站简要地总结了这些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system Thermophysical properties of synthetic marialite Thermodynamic modeling of the Mn–Si–O system Fundamentals on dependence of volume on pressure and temperature High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1