{"title":"The Improved Value-at-Risk for Heteroscedastic Processes and Their Coverage Probability","authors":"Khreshna Syuhada","doi":"10.1155/2020/7638517","DOIUrl":null,"url":null,"abstract":"A risk measure commonly used in financial risk management, namely, Value-at-Risk (VaR), is studied. In particular, we find a VaR forecast for heteroscedastic processes such that its (conditional) coverage probability is close to the nominal. To do so, we pay attention to the effect of estimator variability such as asymptotic bias and mean square error. Numerical analysis is carried out to illustrate this calculation for the Autoregressive Conditional Heteroscedastic (ARCH) model, an observable volatility type model. In comparison, we find VaR for the latent volatility model i.e., the Stochastic Volatility Autoregressive (SVAR) model. It is found that the effect of estimator variability is significant to obtain VaR forecast with better coverage. In addition, we may only be able to assess unconditional coverage probability for VaR forecast of the SVAR model. This is due to the fact that the volatility process of the model is unobservable.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/7638517","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/7638517","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10
Abstract
A risk measure commonly used in financial risk management, namely, Value-at-Risk (VaR), is studied. In particular, we find a VaR forecast for heteroscedastic processes such that its (conditional) coverage probability is close to the nominal. To do so, we pay attention to the effect of estimator variability such as asymptotic bias and mean square error. Numerical analysis is carried out to illustrate this calculation for the Autoregressive Conditional Heteroscedastic (ARCH) model, an observable volatility type model. In comparison, we find VaR for the latent volatility model i.e., the Stochastic Volatility Autoregressive (SVAR) model. It is found that the effect of estimator variability is significant to obtain VaR forecast with better coverage. In addition, we may only be able to assess unconditional coverage probability for VaR forecast of the SVAR model. This is due to the fact that the volatility process of the model is unobservable.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.