Estimation of a Finite Population Mean under Random Nonresponse Using Kernel Weights

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-04-21 DOI:10.1155/2020/8090381
Nelson Kiprono Bii, C. O. Onyango, J. Odhiambo
{"title":"Estimation of a Finite Population Mean under Random Nonresponse Using Kernel Weights","authors":"Nelson Kiprono Bii, C. O. Onyango, J. Odhiambo","doi":"10.1155/2020/8090381","DOIUrl":null,"url":null,"abstract":"Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8090381","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8090381","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Nonresponse is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random nonresponse using auxiliary data. In this study, it is assumed that random nonresponse occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random nonresponse. In particular, auxiliary information is used via an improved Nadaraya–Watson kernel regression technique to compensate for random nonresponse. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of a finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at coverage rate. The results obtained in this study are useful for instance in choosing efficient estimators of a finite population mean in demographic sample surveys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机无响应条件下有限总体均值的核权估计
在抽样调查中,无反应是一个潜在的误差来源。它在有限总体参数的估计中引入了偏差和大方差。回归模型被认为是利用辅助数据减少随机无响应引起的偏差和方差的技术之一。在本研究中,假设在整群抽样的第二阶段,调查变量发生随机无响应,假设整个过程中都有完整的辅助信息。在估计阶段通过回归模型使用辅助信息来解决随机无响应问题。特别是,辅助信息通过改进的nadaraya - Watson核回归技术来补偿随机无响应。给出了估计量的渐近偏差和均方误差。此外,仿真研究表明,与现有的有限总体均值估计器相比,所提出的估计器具有更小的偏差值和更小的均方误差值。所提出的估计器在覆盖率下具有更紧密的置信区间长度。本研究的结果对于在人口统计抽样调查中选择有限总体均值的有效估计量是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1