Study of corrective abrasive finishing for plane surfaces using magnetic abrasive finishing processes

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2021-05-17 DOI:10.1063/10.0004961
Yulong Zhang, Y. Zou
{"title":"Study of corrective abrasive finishing for plane surfaces using magnetic abrasive finishing processes","authors":"Yulong Zhang, Y. Zou","doi":"10.1063/10.0004961","DOIUrl":null,"url":null,"abstract":"On the basis of ordinary plane magnetic abrasive finishing, a finishing method is proposed that can improve the flatness of a plane workpiece. In this method, the feed speed is varied during finishing according to the profile curve of the initial surface and the material removal efficiency, to control the effective finishing time in different areas and thereby improve the surface flatness. A small magnetic pole with an end face diameter of 1 mm is designed, and a ferromagnetic plate is placed under the workpiece to improve the uniformity of the magnetic field distribution near the magnetic pole. An experiment on an A5052 aluminum alloy plate workpiece shows that after 60 min of finishing using the proposed method, the extreme difference of the workpiece surface can be reduced from 14.317 μm to 2.18 μm, and the standard deviation can be reduced from 3.322 μm to 0.417 μm. At the same time, according to the measurement results, a similar flatness can be achieved at different positions on the finishing area. Thus, the proposed variable-speed finishing method leads to obvious improvements in flatness.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/10.0004961","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0004961","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

On the basis of ordinary plane magnetic abrasive finishing, a finishing method is proposed that can improve the flatness of a plane workpiece. In this method, the feed speed is varied during finishing according to the profile curve of the initial surface and the material removal efficiency, to control the effective finishing time in different areas and thereby improve the surface flatness. A small magnetic pole with an end face diameter of 1 mm is designed, and a ferromagnetic plate is placed under the workpiece to improve the uniformity of the magnetic field distribution near the magnetic pole. An experiment on an A5052 aluminum alloy plate workpiece shows that after 60 min of finishing using the proposed method, the extreme difference of the workpiece surface can be reduced from 14.317 μm to 2.18 μm, and the standard deviation can be reduced from 3.322 μm to 0.417 μm. At the same time, according to the measurement results, a similar flatness can be achieved at different positions on the finishing area. Thus, the proposed variable-speed finishing method leads to obvious improvements in flatness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面表面磁研磨修正抛光工艺研究
在普通平面磁性磨料精加工的基础上,提出了一种提高平面工件平面度的精加工方法。在这种方法中,在精加工过程中,根据初始表面的轮廓曲线和材料去除效率来改变进给速度,以控制不同区域的有效精加工时间,从而提高表面平整度。设计了一个端面直径为1mm的小磁极,并在工件下方放置了一块铁磁性板,以提高磁极附近磁场分布的均匀性。在A5052铝合金板材上进行的实验表明,采用该方法精加工60min后,工件表面的极值差可从14.317μm降至2.18μm,标准偏差可从3.322μm降至0.417μm。同时,根据测量结果,在精加工区域的不同位置可以获得相似的平面度。因此,所提出的变速精加工方法显著提高了平面度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
Comparative analysis of single-crater parameters in ultrasonic-assisted and unassisted micro-EDM of Ti6Al4V using discharge plasma imaging Simulation and fabrication of in vitro microfluidic microelectrode array chip for patterned culture and electrophysiological detection of neurons An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1