Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-01 Epub Date: 2023-03-23 DOI:10.1007/s11571-023-09954-y
Cheng-Li Zhao, Wenjie Hou, Yanbing Jia, Barbara J Sahakian, Qiang Luo
{"title":"Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain.","authors":"Cheng-Li Zhao, Wenjie Hou, Yanbing Jia, Barbara J Sahakian, Qiang Luo","doi":"10.1007/s11571-023-09954-y","DOIUrl":null,"url":null,"abstract":"<p><p>Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-023-09954-y.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"973-986"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11571-023-09954-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-023-09954-y.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静息状态磁共振成像信号复杂性的性别差异及其与大脑雌激素信号通路的关系
大脑中的性别差异已被广泛报道,它可能是阐明许多疾病和药物反应中性别差异的关键。然而,人脑结构和功能上的这些性别差异的分子相关性仍不清楚。在这里,我们使用样本熵(SampEn)来量化一个大型神经影像队列(N = 1,642)中静息态功能磁共振成像(rsfMRI)的信号复杂性。在男性和女性中,前顶叶控制网络和丘脑网络的信号复杂度较高,而小脑和感觉运动网络的信号复杂度较低。与男性大脑相比,我们发现女性大脑所有功能网络的信号复杂度都更高,其中默认模式网络的性别差异最大。利用脑组织中的基因表达数据,我们发现了与大脑信号复杂性性别差异显著相关的基因。这些重要的基因富集在大脑皮层与其他组织之间差异表达的基因集、雌激素信号通路以及神经可塑性的生物功能中。其中,雌激素信号通路中的 G 蛋白偶联雌激素受体 1 基因在 SampEn 性别差异较大的脑区表达较多。总之,女性大脑中更大的复杂性可能反映了女性性激素波动和雌激素神经调节之间的相互作用:在线版本包含补充材料,可查阅 10.1007/s11571-023-09954-y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1