{"title":"A Rule-Based Predictive Model for Estimating Human Impact Data in Natural Onset Disasters—The Case of a PRED Model","authors":"Sara Rye, E. Aktas","doi":"10.3390/logistics7020031","DOIUrl":null,"url":null,"abstract":"Background: This paper proposes a framework to cope with the lack of data at the time of a disaster by employing predictive models. The framework can be used for disaster human impact assessment based on the socio-economic characteristics of the affected countries. Methods: A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept drift phenomenon and rule-based classifiers, namely the Moving Average (MA). Results: Predictive model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster Severity Analysis (DSA) Technique. Conclusions: comparison with the real data shows that the platform can predict the human impact of a disaster (fatality, injured, homeless) with up to 3% error; thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.","PeriodicalId":56264,"journal":{"name":"Logistics-Basel","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logistics-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/logistics7020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This paper proposes a framework to cope with the lack of data at the time of a disaster by employing predictive models. The framework can be used for disaster human impact assessment based on the socio-economic characteristics of the affected countries. Methods: A panel data of 4252 natural onset disasters between 1980 to 2020 is processed through concept drift phenomenon and rule-based classifiers, namely the Moving Average (MA). Results: Predictive model for Estimating Data (PRED) is developed as a decision-making platform based on the Disaster Severity Analysis (DSA) Technique. Conclusions: comparison with the real data shows that the platform can predict the human impact of a disaster (fatality, injured, homeless) with up to 3% error; thus, it is able to inform the selection of disaster relief partners for various disaster scenarios.