Effect of agitation speed on microencapsulation of healing agent in PMMA shell and study on the mechanical properties of epoxy/PMMA microcapsules

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-06-01 DOI:10.12989/SSS.2021.27.6.1001
R. Jahadi, H. Beheshti, M. Heidari-Rarani, A. H. Navarchian
{"title":"Effect of agitation speed on microencapsulation of healing agent in PMMA shell and study on the mechanical properties of epoxy/PMMA microcapsules","authors":"R. Jahadi, H. Beheshti, M. Heidari-Rarani, A. H. Navarchian","doi":"10.12989/SSS.2021.27.6.1001","DOIUrl":null,"url":null,"abstract":"In this study, the effect of agitation speed as a key process parameter on the morphology and particle size of epoxy-Poly (methyl methacrylate) (PMMA) microcapsules was investigated. Thus, a new interpretation is presented to relate between the microcapsule size to rotational speed so as to predict the particle size at different agitation speeds from the initial capsule size. The PMMA shell capsules containing EC 157 epoxy and hardener as healing materials were fabricated through the internal phase separation method. The process was performed at 600 and 1000 rpm mechanical mixing rates. Scanning electron microscopy (SEM) revealed the formation of spherical microcapsules with smooth surfaces. According to static light scattering (SLS) results, the average diameter size of the epoxy/PMMA capsules at two mixing rates were 7.49 and 5.11","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.6.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the effect of agitation speed as a key process parameter on the morphology and particle size of epoxy-Poly (methyl methacrylate) (PMMA) microcapsules was investigated. Thus, a new interpretation is presented to relate between the microcapsule size to rotational speed so as to predict the particle size at different agitation speeds from the initial capsule size. The PMMA shell capsules containing EC 157 epoxy and hardener as healing materials were fabricated through the internal phase separation method. The process was performed at 600 and 1000 rpm mechanical mixing rates. Scanning electron microscopy (SEM) revealed the formation of spherical microcapsules with smooth surfaces. According to static light scattering (SLS) results, the average diameter size of the epoxy/PMMA capsules at two mixing rates were 7.49 and 5.11
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
搅拌速度对愈合剂微胶囊化的影响及环氧树脂/PMMA微胶囊力学性能的研究
研究了搅拌速度作为关键工艺参数对环氧-聚甲基丙烯酸甲酯(PMMA)微胶囊形态和粒径的影响。因此,提出了一种新的解释,将微胶囊尺寸与旋转速度联系起来,以便从初始胶囊尺寸预测不同搅拌速度下的颗粒尺寸。采用内相分离法制备了含有EC 157环氧树脂和固化剂作为愈合材料的PMMA壳胶囊。该过程在600和1000rpm的机械混合速率下进行。扫描电子显微镜(SEM)显示形成了表面光滑的球形微胶囊。根据静态光散射(SLS)结果,在两种混合速率下,环氧树脂/PMMA胶囊的平均直径尺寸分别为7.49和5.11
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1