R. Jahadi, H. Beheshti, M. Heidari-Rarani, A. H. Navarchian
{"title":"Effect of agitation speed on microencapsulation of healing agent in PMMA shell and study on the mechanical properties of epoxy/PMMA microcapsules","authors":"R. Jahadi, H. Beheshti, M. Heidari-Rarani, A. H. Navarchian","doi":"10.12989/SSS.2021.27.6.1001","DOIUrl":null,"url":null,"abstract":"In this study, the effect of agitation speed as a key process parameter on the morphology and particle size of epoxy-Poly (methyl methacrylate) (PMMA) microcapsules was investigated. Thus, a new interpretation is presented to relate between the microcapsule size to rotational speed so as to predict the particle size at different agitation speeds from the initial capsule size. The PMMA shell capsules containing EC 157 epoxy and hardener as healing materials were fabricated through the internal phase separation method. The process was performed at 600 and 1000 rpm mechanical mixing rates. Scanning electron microscopy (SEM) revealed the formation of spherical microcapsules with smooth surfaces. According to static light scattering (SLS) results, the average diameter size of the epoxy/PMMA capsules at two mixing rates were 7.49 and 5.11","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.6.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, the effect of agitation speed as a key process parameter on the morphology and particle size of epoxy-Poly (methyl methacrylate) (PMMA) microcapsules was investigated. Thus, a new interpretation is presented to relate between the microcapsule size to rotational speed so as to predict the particle size at different agitation speeds from the initial capsule size. The PMMA shell capsules containing EC 157 epoxy and hardener as healing materials were fabricated through the internal phase separation method. The process was performed at 600 and 1000 rpm mechanical mixing rates. Scanning electron microscopy (SEM) revealed the formation of spherical microcapsules with smooth surfaces. According to static light scattering (SLS) results, the average diameter size of the epoxy/PMMA capsules at two mixing rates were 7.49 and 5.11