Corn Plant Counting Using Deep Learning and UAV Images

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2019-08-08 DOI:10.1109/LGRS.2019.2930549
Bruno T. Kitano, C. Mendes, A. R. Geus, Henrique C. Oliveira, Jefferson R. Souza
{"title":"Corn Plant Counting Using Deep Learning and UAV Images","authors":"Bruno T. Kitano, C. Mendes, A. R. Geus, Henrique C. Oliveira, Jefferson R. Souza","doi":"10.1109/LGRS.2019.2930549","DOIUrl":null,"url":null,"abstract":"The adoption of new technologies, such as unmanned aerial vehicles (UAVs), image processing, and machine learning, is disrupting traditional concepts in agriculture, with a new range of possibilities opening in its fields of research. Plant density is one of the most important corn (Zea mays L.) yield factors, yet its precise measurement after the emergence of plants is impractical in large-scale production fields due to the amount of labor required. This letter aims to develop techniques that enable corn plant counting and the automation of this process through deep learning and computational vision, using images of several corn crops obtained using a low-cost unmanned aerial vehicle (UAV) platform assembled with an RGB sensor.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2019-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2019.2930549","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2019.2930549","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 65

Abstract

The adoption of new technologies, such as unmanned aerial vehicles (UAVs), image processing, and machine learning, is disrupting traditional concepts in agriculture, with a new range of possibilities opening in its fields of research. Plant density is one of the most important corn (Zea mays L.) yield factors, yet its precise measurement after the emergence of plants is impractical in large-scale production fields due to the amount of labor required. This letter aims to develop techniques that enable corn plant counting and the automation of this process through deep learning and computational vision, using images of several corn crops obtained using a low-cost unmanned aerial vehicle (UAV) platform assembled with an RGB sensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习和无人机图像进行玉米植株计数
新技术的采用,如无人机、图像处理和机器学习,正在颠覆农业的传统概念,在其研究领域开辟了一系列新的可能性。植物密度是玉米(Zea mays L.)最重要的产量因素之一,但由于需要大量的劳动力,在大规模生产领域中,在植物出现后对其进行精确测量是不切实际的。这封信旨在开发通过深度学习和计算视觉实现玉米植株计数和这一过程自动化的技术,使用由RGB传感器组装的低成本无人机平台获得的几种玉米作物的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1