Reinforcement Learning with Deep Quantum Neural Networks

Wei Hu, James Hu
{"title":"Reinforcement Learning with Deep Quantum Neural Networks","authors":"Wei Hu, James Hu","doi":"10.4236/JQIS.2019.91001","DOIUrl":null,"url":null,"abstract":"The advantage of quantum computers over classical computers fuels the recent trend of developing machine learning algorithms on quantum computers, which can potentially lead to breakthroughs and new learning models in this area. The aim of our study is to explore deep quantum reinforcement learning (RL) on photonic quantum computers, which can process information stored in the quantum states of light. These quantum computers can naturally represent continuous variables, making them an ideal platform to create quantum versions of neural networks. Using quantum photonic circuits, we implement Q learning and actor-critic algorithms with multilayer quantum neural networks and test them in the grid world environment. Our experiments show that 1) these quantum algorithms can solve the RL problem and 2) compared to one layer, using three layer quantum networks improves the learning of both algorithms in terms of rewards collected. In summary, our findings suggest that having more layers in deep quantum RL can enhance the learning outcome.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2019.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The advantage of quantum computers over classical computers fuels the recent trend of developing machine learning algorithms on quantum computers, which can potentially lead to breakthroughs and new learning models in this area. The aim of our study is to explore deep quantum reinforcement learning (RL) on photonic quantum computers, which can process information stored in the quantum states of light. These quantum computers can naturally represent continuous variables, making them an ideal platform to create quantum versions of neural networks. Using quantum photonic circuits, we implement Q learning and actor-critic algorithms with multilayer quantum neural networks and test them in the grid world environment. Our experiments show that 1) these quantum algorithms can solve the RL problem and 2) compared to one layer, using three layer quantum networks improves the learning of both algorithms in terms of rewards collected. In summary, our findings suggest that having more layers in deep quantum RL can enhance the learning outcome.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度量子神经网络的强化学习
量子计算机相对于经典计算机的优势推动了在量子计算机上开发机器学习算法的最新趋势,这可能导致该领域的突破和新的学习模型。我们研究的目的是探索光子量子计算机上的深度量子强化学习(RL),它可以处理存储在光的量子态中的信息。这些量子计算机可以自然地表示连续变量,使其成为创建量子版本神经网络的理想平台。利用量子光子电路,我们用多层量子神经网络实现了Q学习和actor-critic算法,并在网格环境中进行了测试。我们的实验表明,1)这些量子算法可以解决RL问题,2)与一层相比,使用三层量子网络在收集奖励方面提高了两种算法的学习。总之,我们的发现表明,在深量子RL中拥有更多的层可以提高学习效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
108
期刊最新文献
Toward Constructing a Continuous Logical Operator for Error-Corrected Quantum Sensing What in Fact Proves the Violation of the Bell-Type Inequalities? Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining Bell’s Theorem and Einstein’s Worry about Quantum Mechanics Accelerating Quantum Readiness for Sectors: Risk Management and Strategies for Sectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1