Role of oxide support in electrocatalytic nitrate reduction on Cu

IF 2.9 Q2 ELECTROCHEMISTRY Electrochemical science advances Pub Date : 2022-11-29 DOI:10.1002/elsa.202100201
O. Quinn Carvalho, Sophia R. S. Jones, Ashley E. Berninghaus, Richard F. Hilliard, Tyler S. Radniecki, Kelsey A. Stoerzinger
{"title":"Role of oxide support in electrocatalytic nitrate reduction on Cu","authors":"O. Quinn Carvalho,&nbsp;Sophia R. S. Jones,&nbsp;Ashley E. Berninghaus,&nbsp;Richard F. Hilliard,&nbsp;Tyler S. Radniecki,&nbsp;Kelsey A. Stoerzinger","doi":"10.1002/elsa.202100201","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical nitrate reduction reaction (NO<sub>3</sub>RR) has the potential for distributed water treatment and renewable chemical synthesis. Cu is an active monometallic electrocatalyst for the NO<sub>3</sub>RR in acidic and alkaline electrolytes, where activity is limited by the reduction of adsorbed nitrate to nitrite. Oxygen-vacancy forming metal-oxide supports provide sites for N-O bond activation in thermal reduction, impacting product distribution as well. Here we compare the electrochemical NO<sub>3</sub>RR activity of Cu deposited on two metal-oxide supports (cerium dioxide [Cu/CeO<sub>2-δ</sub>] and fluorine-doped tin dioxide [Cu/FTO]) to a Cu foil benchmark. Considering activity in phosphate-buffered neutral media, nitrate and adsorbed hydrogen compete for surface sites under NO<sub>3</sub>RR conditions. The less-cathodic overpotential on Cu/CeO<sub>2-δ</sub> compared to Cu/FTO is attributed to stronger nitrate adsorption, similar to thermal nitrate reduction. Utilization of CeO<sub>2-δ</sub> as an electrocatalyst support slightly shifting product distribution toward more oxidized products, either by enhancing nitrate affinity or by a more dynamic process involving the formation and healing of oxygen vacancies (𝑣<sub>O</sub><sup>••</sup>). These results suggest supporting catalysts on metal oxides may enhance activity by promoting the adsorption of anionic reactants on cathodic electrocatalysts.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical nitrate reduction reaction (NO3RR) has the potential for distributed water treatment and renewable chemical synthesis. Cu is an active monometallic electrocatalyst for the NO3RR in acidic and alkaline electrolytes, where activity is limited by the reduction of adsorbed nitrate to nitrite. Oxygen-vacancy forming metal-oxide supports provide sites for N-O bond activation in thermal reduction, impacting product distribution as well. Here we compare the electrochemical NO3RR activity of Cu deposited on two metal-oxide supports (cerium dioxide [Cu/CeO2-δ] and fluorine-doped tin dioxide [Cu/FTO]) to a Cu foil benchmark. Considering activity in phosphate-buffered neutral media, nitrate and adsorbed hydrogen compete for surface sites under NO3RR conditions. The less-cathodic overpotential on Cu/CeO2-δ compared to Cu/FTO is attributed to stronger nitrate adsorption, similar to thermal nitrate reduction. Utilization of CeO2-δ as an electrocatalyst support slightly shifting product distribution toward more oxidized products, either by enhancing nitrate affinity or by a more dynamic process involving the formation and healing of oxygen vacancies (𝑣O••). These results suggest supporting catalysts on metal oxides may enhance activity by promoting the adsorption of anionic reactants on cathodic electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化物载体在铜电催化硝酸盐还原中的作用
电化学硝酸盐还原反应(NO3RR)具有分布式水处理和可再生化学合成的潜力。铜是在酸性和碱性电解质中进行 NO3RR 反应的活性单金属电催化剂,其活性受到吸附的硝酸盐还原为亚硝酸盐的限制。氧空位形成的金属氧化物支撑为热还原过程中的 N-O 键活化提供了场所,同时也影响了产物的分布。在此,我们将沉积在两种金属氧化物支撑物(二氧化铈 [Cu/CeO2-δ] 和掺氟二氧化锡 [Cu/FTO])上的铜的电化学 NO3RR 活性与铜箔基准进行了比较。考虑到在磷酸盐缓冲中性介质中的活性,在 NO3RR 条件下,硝酸盐和吸附氢会竞争表面位点。与 Cu/FTO 相比,Cu/CeO2-δ 的阴极过电位较低,这是因为硝酸盐吸附力较强,类似于硝酸盐热还原。利用 CeO2-δ 作为电催化剂,可以通过提高硝酸盐的亲和力,或通过涉及氧空位(𝑣O--)的形成和愈合的更动态过程,使产物分布略微转向更多的氧化产物。这些结果表明,在金属氧化物上支撑催化剂可以通过促进阴极电催化剂对阴离子反应物的吸附来提高活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Enzymatic and Enzyme-Free Electrochemical Lactate Sensors: A Review of the Recent Developments How Microstructures, Oxide Layers, and Charge Transfer Reactions Influence Double Layer Capacitances. Part 2: Equivalent Circuit Models Polyaniline-based synergetic electrocatalysts for CO2 reduction reaction: A review High-Speed AFM Observation of Electrolytic Hydrogen Nanobubbles During Potential Scanning Electrochemical Contributions: Svante August Arrhenius (1859–1927)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1