Neuronal Transcriptome Analysis of a Widely Recognised Molluscan Model Organism Highlights the Absence of Key Proteins Involved in the De Novo Synthesis and Receptor-Mediation of Sex Steroids in Vertebrates

Pub Date : 2021-08-10 DOI:10.4002/040.064.0103
I. Fodor, J. Koene, Z. Pirger
{"title":"Neuronal Transcriptome Analysis of a Widely Recognised Molluscan Model Organism Highlights the Absence of Key Proteins Involved in the De Novo Synthesis and Receptor-Mediation of Sex Steroids in Vertebrates","authors":"I. Fodor, J. Koene, Z. Pirger","doi":"10.4002/040.064.0103","DOIUrl":null,"url":null,"abstract":"ABSTRACT Over the last ten years, the interpretation of the presence of vertebrate sex steroids in molluscs has changed dramatically. Evidence has been accumulating that CYP11A and CYP19A genes (encoding cholesterol side-chain cleavage enzyme and aromatase), that are crucial for the biosynthesis of sex steroids in vertebrates, as well as key functional sex steroid receptors, are missing in molluscan genomes. To provide further evidence, we sequenced the whole transcriptome of the central nervous system of the great pond snail (Lymnaea stagnalis) and screened it for sequences homologous to those used in the generally accepted vertebrate sex steroidogenesis pathway as well as the known sex steroid receptor-related genes (such as CYP11A, CYP19A, 3β-HSD, nPR, and nAR). Our screening confirmed the absence of several key sequences that are essential to accomplish a full sex steroid biosynthesis pathway similar to that of vertebrates. There was also no evidence for nuclear sex steroid receptors. Our findings support the contention that molluscan endocrinology differs from the well-characterized vertebrate endocrine system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4002/040.064.0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Over the last ten years, the interpretation of the presence of vertebrate sex steroids in molluscs has changed dramatically. Evidence has been accumulating that CYP11A and CYP19A genes (encoding cholesterol side-chain cleavage enzyme and aromatase), that are crucial for the biosynthesis of sex steroids in vertebrates, as well as key functional sex steroid receptors, are missing in molluscan genomes. To provide further evidence, we sequenced the whole transcriptome of the central nervous system of the great pond snail (Lymnaea stagnalis) and screened it for sequences homologous to those used in the generally accepted vertebrate sex steroidogenesis pathway as well as the known sex steroid receptor-related genes (such as CYP11A, CYP19A, 3β-HSD, nPR, and nAR). Our screening confirmed the absence of several key sequences that are essential to accomplish a full sex steroid biosynthesis pathway similar to that of vertebrates. There was also no evidence for nuclear sex steroid receptors. Our findings support the contention that molluscan endocrinology differs from the well-characterized vertebrate endocrine system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
一种被广泛认可的软体动物模式生物的神经元转录组分析强调了脊椎动物性类固醇从头合成和受体介导的关键蛋白的缺失
在过去的十年中,对软体动物中存在的脊椎动物性类固醇的解释发生了巨大的变化。越来越多的证据表明,对脊椎动物性类固醇生物合成至关重要的CYP11A和CYP19A基因(编码胆固醇侧链切割酶和芳香化酶)以及关键的功能性类固醇受体在软体动物基因组中缺失。为了提供进一步的证据,我们对大池塘蜗牛(lynaea alis)中枢神经系统的整个转录组进行了测序,并筛选了与公认的脊椎动物性类固醇发生途径以及已知的性类固醇受体相关基因(如CYP11A、CYP19A、3β-HSD、nPR和nAR)同源的序列。我们的筛选证实了几个关键序列的缺失,这些序列是完成与脊椎动物类似的完整性类固醇生物合成途径所必需的。也没有证据表明存在核性类固醇受体。我们的发现支持了软体动物内分泌学不同于脊椎动物内分泌系统的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1