Towards the conceptual design of ML-enhanced products: the UX value framework and the CoMLUX design process

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing Pub Date : 2023-03-30 DOI:10.1017/S0890060422000270
Ling-yun Sun, Zhuoshu Li, Zhibin Zhou, Shanghua Lou, Wenan Li, Yuyang Zhang
{"title":"Towards the conceptual design of ML-enhanced products: the UX value framework and the CoMLUX design process","authors":"Ling-yun Sun, Zhuoshu Li, Zhibin Zhou, Shanghua Lou, Wenan Li, Yuyang Zhang","doi":"10.1017/S0890060422000270","DOIUrl":null,"url":null,"abstract":"Abstract With the increasing utilization of machine learning (ML) to enhance products’ capabilities, the design research community has begun to explore how to support the conceptual design of ML-enhanced products. However, UX value creation of ML-enhanced products is still challenging because of ML's unique characteristics and numerous complex factors in conceptual design. To help designers create UX value for ML-enhanced products, we developed the UX value framework and the CoMLUX design process. The proposed framework describes how ML, stakeholders, and context co-create the UX value of ML-enhanced products, and identifies the growability and opacity of ML, helping designers systematically understand the co-creators while avoiding cognitive overload. The CoMLUX design process provides practical guidance for designing ML-enhanced products with growability and transparency. At last, we demonstrate the usage methods of the framework and process in an actual project and summarize the inspirations and limitations of our work.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000270","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract With the increasing utilization of machine learning (ML) to enhance products’ capabilities, the design research community has begun to explore how to support the conceptual design of ML-enhanced products. However, UX value creation of ML-enhanced products is still challenging because of ML's unique characteristics and numerous complex factors in conceptual design. To help designers create UX value for ML-enhanced products, we developed the UX value framework and the CoMLUX design process. The proposed framework describes how ML, stakeholders, and context co-create the UX value of ML-enhanced products, and identifies the growability and opacity of ML, helping designers systematically understand the co-creators while avoiding cognitive overload. The CoMLUX design process provides practical guidance for designing ML-enhanced products with growability and transparency. At last, we demonstrate the usage methods of the framework and process in an actual project and summarize the inspirations and limitations of our work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ML增强产品的概念设计:用户体验价值框架和CoMLUX设计过程
随着越来越多地利用机器学习(ML)来增强产品的功能,设计研究界开始探索如何支持机器学习增强产品的概念设计。然而,机器学习增强产品的用户体验价值创造仍然具有挑战性,因为机器学习的独特特性和概念设计中的许多复杂因素。为了帮助设计师为ml增强产品创造用户体验价值,我们开发了用户体验价值框架和复杂设计流程。该框架描述了机器学习、利益相关者和上下文如何共同创造机器学习增强产品的用户体验价值,并确定了机器学习的可增长性和不透明性,帮助设计师系统地理解共同创造者,同时避免认知过载。复杂设计过程为设计具有可生长性和透明度的ml增强产品提供了实用指导。最后,我们在一个实际项目中展示了框架和流程的使用方法,并总结了我们工作的启发和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
期刊最新文献
Does empathy lead to creativity? A simulation-based investigation on the role of team trait empathy on nominal group concept generation and early concept screening A knowledge-enabled approach for user experience-driven product improvement at the conceptual design stage Free-text inspiration search for systematic bio-inspiration support of engineering design Tool life prediction via SMB-enabled monitor based on BPNN coupling algorithms for sustainable manufacturing A comparative review on the role of stimuli in idea generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1