IGZO CIM: Enabling In-Memory Computations Using Multilevel Capacitorless Indium–Gallium–Zinc–Oxide-Based Embedded DRAM Technology

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-06-01 DOI:10.1109/JXCDC.2022.3188366
Siddhartha Raman Sundara Raman;Shanshan Xie;Jaydeep P. Kulkarni
{"title":"IGZO CIM: Enabling In-Memory Computations Using Multilevel Capacitorless Indium–Gallium–Zinc–Oxide-Based Embedded DRAM Technology","authors":"Siddhartha Raman Sundara Raman;Shanshan Xie;Jaydeep P. Kulkarni","doi":"10.1109/JXCDC.2022.3188366","DOIUrl":null,"url":null,"abstract":"Compute-in-memory (CIM) is a promising approach for efficiently performing data-centric computing (such as neural network computations). Among the multiple semiconductor memory technologies, embedded DRAM (eDRAM), which integrates the DRAM bit cell with high-performance logic transistors, can enable efficient CIM designs. However, the silicon-based eDRAM technology suffers from poor retention time-incurring significant refresh power overhead. However, eDRAM using back-end-of-line (BEOL) integrated \n<inline-formula> <tex-math>$C$ </tex-math></inline-formula>\n-axis aligned crystalline (CAAC) indium–gallium–zinc–oxide (IGZO) transistors, exhibiting extreme low leakage, is a promising memory technology with lower refresh power overhead. A long retention time in IGZO eDRAM can enable multilevel cell functionality, which can improve its efficacy in CIM applications. In this article, we explore a capacitorless IGZO eDRAM-based multilevel cell, capable of storing 1.5 bits/cell for CIM designs focused on deep neural network (DNN) inference applications. We perform a detailed design space exploration of IGZO eDRAM sensitivity to process temperature variations for read, write, and retention operations followed by architecture-level simulations comparing performance and energy for different workloads. The effectiveness of IGZO eDRAM-based CIM architecture is evaluated using a representative neural network, and the proposed approach achieves 82% Top-1 inference accuracy for the CIFAR-10 dataset, compared with 87% software accuracy with high bit cell storage density.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9903013/09815041.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9815041/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

Abstract

Compute-in-memory (CIM) is a promising approach for efficiently performing data-centric computing (such as neural network computations). Among the multiple semiconductor memory technologies, embedded DRAM (eDRAM), which integrates the DRAM bit cell with high-performance logic transistors, can enable efficient CIM designs. However, the silicon-based eDRAM technology suffers from poor retention time-incurring significant refresh power overhead. However, eDRAM using back-end-of-line (BEOL) integrated $C$ -axis aligned crystalline (CAAC) indium–gallium–zinc–oxide (IGZO) transistors, exhibiting extreme low leakage, is a promising memory technology with lower refresh power overhead. A long retention time in IGZO eDRAM can enable multilevel cell functionality, which can improve its efficacy in CIM applications. In this article, we explore a capacitorless IGZO eDRAM-based multilevel cell, capable of storing 1.5 bits/cell for CIM designs focused on deep neural network (DNN) inference applications. We perform a detailed design space exploration of IGZO eDRAM sensitivity to process temperature variations for read, write, and retention operations followed by architecture-level simulations comparing performance and energy for different workloads. The effectiveness of IGZO eDRAM-based CIM architecture is evaluated using a representative neural network, and the proposed approach achieves 82% Top-1 inference accuracy for the CIFAR-10 dataset, compared with 87% software accuracy with high bit cell storage density.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IGZO CIM:使用基于多电平无电容铟镓锌氧化物的嵌入式DRAM技术实现内存计算
内存计算(CIM)是有效执行以数据为中心的计算(如神经网络计算)的一种很有前途的方法。在多种半导体存储技术中,嵌入式DRAM (eDRAM)集成了DRAM位单元和高性能逻辑晶体管,可以实现高效的CIM设计。然而,硅基eDRAM技术的缺点是保持时间较差,会导致显著的刷新功耗开销。然而,eDRAM采用后端线(BEOL)集成的$C$轴对齐晶体(CAAC)铟镓锌氧化物(IGZO)晶体管,具有极低的漏损,是一种具有较低刷新功耗的有前途的存储技术。IGZO eDRAM中较长的保留时间可以实现多级单元功能,从而提高其在CIM应用中的效率。在本文中,我们探索了一种基于无电容IGZO edram的多层单元,能够存储1.5比特/单元,用于深度神经网络(DNN)推理应用的CIM设计。我们对IGZO eDRAM对读、写和保留操作的过程温度变化的敏感性进行了详细的设计空间探索,然后进行了架构级模拟,比较了不同工作负载的性能和能量。使用代表性神经网络评估了基于IGZO edram的CIM架构的有效性,该方法对CIFAR-10数据集实现了82%的Top-1推理准确率,而在高位元存储密度下,该方法的软件准确率为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1