Smoothing Parameters for Recursive Kernel Density Estimators under Censoring

Y. Slaoui
{"title":"Smoothing Parameters for Recursive Kernel Density Estimators under Censoring","authors":"Y. Slaoui","doi":"10.31390/COSA.13.2.02","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the nonparametric estimation of an unknown density under censoring. Firstly, we propose a recursive kernel density estimators under censoring, based on a stochastic approximation algorithm. Then, we showed that our recursive estimator is consistent and asymptotically normally distributed. Moreover, we describe and investigate a data-driven bandwidth selection procedure based on normal pilot bandwidth reference distributions. We showed that the proposed recursive estimators can be better than the non-recursive in terms of estimation error and much better in terms of computational costs. We corroborated these theoretical results through a simulation study and on Malaria in Senegalese children dataset.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.13.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the nonparametric estimation of an unknown density under censoring. Firstly, we propose a recursive kernel density estimators under censoring, based on a stochastic approximation algorithm. Then, we showed that our recursive estimator is consistent and asymptotically normally distributed. Moreover, we describe and investigate a data-driven bandwidth selection procedure based on normal pilot bandwidth reference distributions. We showed that the proposed recursive estimators can be better than the non-recursive in terms of estimation error and much better in terms of computational costs. We corroborated these theoretical results through a simulation study and on Malaria in Senegalese children dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滤波下递归核密度估计的平滑参数
本文研究了在滤波条件下未知密度的非参数估计问题。首先,我们提出了一种基于随机逼近算法的递归核密度估计。然后,我们证明了我们的递归估计量是一致且渐近正态分布的。此外,我们描述和研究了基于正常导频带宽参考分布的数据驱动带宽选择过程。我们证明了所提出的递归估计器在估计误差方面优于非递归估计器,并且在计算成本方面优于非递归估计器。我们通过模拟研究和塞内加尔儿童疟疾数据集证实了这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications on Stochastic Analysis
Communications on Stochastic Analysis Mathematics-Statistics and Probability
CiteScore
2.40
自引率
0.00%
发文量
0
期刊介绍: The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS
期刊最新文献
Breaking the Silence: Telling Our Stories as an Act of Resistance Deprogramming Deficit: A Narrative of a Developing Black Critical STEM Education Researcher Un réquiem para la lucha Afro-Boricua: Honoring Moments of Decolonization and Resistance to White Supremacy in Academia Tales from the Ivory Tower: Women of Color’s Resistance to Whiteness in Academia On Being an Academic Side Chick: Tales of Two Adjunct Faculty in the Academy That Trained Them
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1