On Wireless Sensor Network Models: A Cross-Layer Systematic Review

IF 3.3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Sensor and Actuator Networks Pub Date : 2023-06-30 DOI:10.3390/jsan12040050
Fernando Ojeda, Diego Mendez, A. Fajardo, F. Ellinger
{"title":"On Wireless Sensor Network Models: A Cross-Layer Systematic Review","authors":"Fernando Ojeda, Diego Mendez, A. Fajardo, F. Ellinger","doi":"10.3390/jsan12040050","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) have been adopted in many fields of application, such as industrial, civil, smart cities, health, and the surveillance domain, to name a few. Fateway and sensor nodes conform to WSN, and each node integrates processor, communication, sensor, and power supply modules, sending and receiving information of a covered area across a propagation medium. Given the increasing complexity of a WSN system, and in an effort to understand, comprehend and analyze an entire WSN, different metrics are used to characterize the performance of the network. To reduce the complexity of the WSN architecture, different approaches and techniques are implemented to capture (model) the properties and behavior of particular aspects of the system. Based on these WSN models, many research works propose solutions to the problem of abstracting and exporting network functionalities and capabilities to the final user. Modeling an entire WSN is a difficult task for researchers since they must consider all of the constraints that affect network metrics, devices and system administration, holistically, and the models developed in different research works are currently focused only on a specific network layer (physical, link, or transport layer), making the estimation of the WSN behavior a very difficult task. In this context, we present a systematic and comprehensive review focused on identifying the existing WSN models, classified into three main areas (node, network, and system-level) and their corresponding challenges. This review summarizes and analyzes the available literature, which allows for the general understanding of WSN modeling in a holistic view, using a proposed taxonomy and consolidating the research trends and open challenges in the area.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless sensor networks (WSNs) have been adopted in many fields of application, such as industrial, civil, smart cities, health, and the surveillance domain, to name a few. Fateway and sensor nodes conform to WSN, and each node integrates processor, communication, sensor, and power supply modules, sending and receiving information of a covered area across a propagation medium. Given the increasing complexity of a WSN system, and in an effort to understand, comprehend and analyze an entire WSN, different metrics are used to characterize the performance of the network. To reduce the complexity of the WSN architecture, different approaches and techniques are implemented to capture (model) the properties and behavior of particular aspects of the system. Based on these WSN models, many research works propose solutions to the problem of abstracting and exporting network functionalities and capabilities to the final user. Modeling an entire WSN is a difficult task for researchers since they must consider all of the constraints that affect network metrics, devices and system administration, holistically, and the models developed in different research works are currently focused only on a specific network layer (physical, link, or transport layer), making the estimation of the WSN behavior a very difficult task. In this context, we present a systematic and comprehensive review focused on identifying the existing WSN models, classified into three main areas (node, network, and system-level) and their corresponding challenges. This review summarizes and analyzes the available literature, which allows for the general understanding of WSN modeling in a holistic view, using a proposed taxonomy and consolidating the research trends and open challenges in the area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络模型:跨层系统综述
无线传感器网络(WSN)已被应用于许多领域,如工业、民用、智能城市、卫生和监控领域等。通道和传感器节点符合WSN,每个节点集成了处理器、通信、传感器和电源模块,通过传播介质发送和接收覆盖区域的信息。鉴于无线传感器网络系统的复杂性不断增加,为了理解、理解和分析整个无线传感器网络,使用不同的度量来表征网络的性能。为了降低WSN体系结构的复杂性,实现了不同的方法和技术来捕获(建模)系统的特定方面的属性和行为。基于这些WSN模型,许多研究工作提出了将网络功能和能力抽象并导出给最终用户的问题的解决方案。对研究人员来说,对整个WSN进行建模是一项艰巨的任务,因为他们必须全面考虑影响网络度量、设备和系统管理的所有约束,而不同研究工作中开发的模型目前只关注特定的网络层(物理层、链路层或传输层),这使得对WSN行为的估计成为一项非常困难的任务。在这种背景下,我们提出了一个系统而全面的综述,重点是确定现有的WSN模型,分为三个主要领域(节点、网络和系统级)及其相应的挑战。这篇综述总结和分析了现有的文献,使我们能够从整体的角度对WSN建模有一个总体的理解,使用拟议的分类法,并巩固该领域的研究趋势和悬而未决的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sensor and Actuator Networks
Journal of Sensor and Actuator Networks Physics and Astronomy-Instrumentation
CiteScore
7.90
自引率
2.90%
发文量
70
审稿时长
11 weeks
期刊介绍: Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Dynamic and Distributed Intelligence over Smart Devices, Internet of Things Edges, and Cloud Computing for Human Activity Recognition Using Wearable Sensors Output Stream from the AQM Queue with BMAP Arrivals Multi-Objective Optimization of Gateway Location Selection in Long-Range Wide Area Networks: A Tradeoff Analysis between System Costs and Bitrate Maximization Robust ISAC Localization in Smart Cities: A Hybrid Network Approach for NLOS Challenges with Uncertain Parameters Reduction in Data Imbalance for Client-Side Training in Federated Learning for the Prediction of Stock Market Prices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1