Novel adsorption mechanisms identified for polymer retention in carbonate rocks

Q3 Materials Science JCIS open Pub Date : 2021-12-01 DOI:10.1016/j.jciso.2021.100026
Eseosa M. Ekanem , Maja Rücker , Sherifat Yesufu-Rufai , Catherine Spurin , Nicholas Ooi , Apostolos Georgiadis , Steffen Berg , Paul F. Luckham
{"title":"Novel adsorption mechanisms identified for polymer retention in carbonate rocks","authors":"Eseosa M. Ekanem ,&nbsp;Maja Rücker ,&nbsp;Sherifat Yesufu-Rufai ,&nbsp;Catherine Spurin ,&nbsp;Nicholas Ooi ,&nbsp;Apostolos Georgiadis ,&nbsp;Steffen Berg ,&nbsp;Paul F. Luckham","doi":"10.1016/j.jciso.2021.100026","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><p>High molecular weight polymers are widely used in oilfield applications, such as in chemical enhanced oil recovery (cEOR) technique for hydrocarbon recovery. However, during flow in a porous rock, polymer retention is usually a major challenge, as it may result in the decrease of polymer concentration or lead to plugging of pores with significant permeability reduction and injectivity loss. Hence, an understanding of the retention mechanisms will have a profound effect in optimizing the process of polymer flooding, in particular, for carbonate rocks, which hold more than half of the world's oil reserves. Therefore, in this study, the retention of hydrolysed polyacrylamide (HPAM) polymer, a commonly used chemical for EOR, is investigated during flow in Estaillades carbonate rock.</p></div><div><h3>Experiments</h3><p>A novel approach of investigating HPAM retention in Estaillades carbonate rock was carried out using Atomic force microscopy (AFM). Since Estaillades carbonate rock is ∼98% calcite, HPAM retention was first characterised on a cleaved flat calcite mineral surface after immersing in HPAM solution. Afterwards, HPAM was flooded in Estaillades carbonate to observe the effect of flow dynamics on the retention mechanisms.</p></div><div><h3>Findings</h3><p>We find that the dominant mechanism for retention of HPAM on calcite after fluid immersion is polymer adsorption, which we believe is driven by the electrostatic interaction between the calcite surface and the solution. The thickness of the adsorbed layer on calcite is beyond 3 ​nm suggesting it is not adsorbed only flat on the surface. Different types of adsorbed layers were formed representing trains, and the more extended loops or tails with the largest polymer layer thickness about 35 ​nm, representing the longer loops or tails. Layers of this thickness will begin to impair the permeability of the rock. However, in Estaillades, thicker adsorbed layers are observed in different regions of the rock surface ranging between 50 and 350 ​nm. We suggest that this is due to either mechanical entrapment and/or polymer entanglement during flow in Estaillades carbonate rock, which will cause the major permeability impairment in porous rocks.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"4 ","pages":"Article 100026"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X21000258/pdfft?md5=9e21ca81d9f5584721f9b8c841d8f32f&pid=1-s2.0-S2666934X21000258-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X21000258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5

Abstract

Hypothesis

High molecular weight polymers are widely used in oilfield applications, such as in chemical enhanced oil recovery (cEOR) technique for hydrocarbon recovery. However, during flow in a porous rock, polymer retention is usually a major challenge, as it may result in the decrease of polymer concentration or lead to plugging of pores with significant permeability reduction and injectivity loss. Hence, an understanding of the retention mechanisms will have a profound effect in optimizing the process of polymer flooding, in particular, for carbonate rocks, which hold more than half of the world's oil reserves. Therefore, in this study, the retention of hydrolysed polyacrylamide (HPAM) polymer, a commonly used chemical for EOR, is investigated during flow in Estaillades carbonate rock.

Experiments

A novel approach of investigating HPAM retention in Estaillades carbonate rock was carried out using Atomic force microscopy (AFM). Since Estaillades carbonate rock is ∼98% calcite, HPAM retention was first characterised on a cleaved flat calcite mineral surface after immersing in HPAM solution. Afterwards, HPAM was flooded in Estaillades carbonate to observe the effect of flow dynamics on the retention mechanisms.

Findings

We find that the dominant mechanism for retention of HPAM on calcite after fluid immersion is polymer adsorption, which we believe is driven by the electrostatic interaction between the calcite surface and the solution. The thickness of the adsorbed layer on calcite is beyond 3 ​nm suggesting it is not adsorbed only flat on the surface. Different types of adsorbed layers were formed representing trains, and the more extended loops or tails with the largest polymer layer thickness about 35 ​nm, representing the longer loops or tails. Layers of this thickness will begin to impair the permeability of the rock. However, in Estaillades, thicker adsorbed layers are observed in different regions of the rock surface ranging between 50 and 350 ​nm. We suggest that this is due to either mechanical entrapment and/or polymer entanglement during flow in Estaillades carbonate rock, which will cause the major permeability impairment in porous rocks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳酸盐岩中聚合物截留的新吸附机制
高分子量聚合物在油田应用中有着广泛的应用,例如用于油气开采的化学提高采收率(cEOR)技术。然而,在多孔岩石的流动过程中,聚合物的保留通常是一个主要挑战,因为它可能导致聚合物浓度下降或导致孔隙堵塞,从而显著降低渗透率和注入能力。因此,对聚合物驱保留机制的理解将对优化聚合物驱工艺产生深远的影响,特别是对于占世界石油储量一半以上的碳酸盐岩而言。因此,在本研究中,研究了水解聚丙烯酰胺(HPAM)聚合物(一种常用的EOR化学物质)在Estaillades碳酸盐岩流动过程中的保留情况。实验采用原子力显微镜(AFM)研究了HPAM在Estaillades碳酸盐岩中的保留情况。由于Estaillades碳酸盐岩中含有~ 98%的方解石,因此浸泡在HPAM溶液中后,HPAM的保留首先在劈裂的扁平方解石矿物表面进行了表征。随后,在Estaillades碳酸盐岩中注入HPAM,观察流动动力学对挽留机制的影响。研究发现:溶液浸泡后HPAM在方解石上的主要保留机制是聚合物吸附,我们认为这是由方解石表面与溶液之间的静电相互作用驱动的。方解石表面的吸附层厚度大于3nm,表明方解石并非仅在表面平坦吸附。形成了不同类型的吸附层,代表了列车,而最大聚合物层厚度约为35 nm的延伸环或尾则代表了较长的环或尾。这种厚度的岩层将开始破坏岩石的渗透性。然而,在Estaillades,在岩石表面50至350 nm之间的不同区域观察到较厚的吸附层。我们认为,这是由于Estaillades碳酸盐岩在流动过程中的机械圈闭和/或聚合物缠结造成的,这将导致多孔岩石的渗透率下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
期刊最新文献
Blending induced variations in Poloxamer's/Pluronic's® gelation: Thermodynamic and rheological perspectives Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications Phosphorene: A novel nanomaterial revolutionizing biomedicine Fabrication and evaluation of PVDF membranes modified with cellulose and cellulose esters from peanut (Arachis hypogea L.) shell for application in methylene blue filtration Polymer-grafted materials as surface-engineered adsorbents for water purification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1