Spatial prediction of groundwater level change based on the Third Law of Geography

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Geographical Information Science Pub Date : 2023-08-17 DOI:10.1080/13658816.2023.2248215
Fang-He Zhao, Jingyi Huang, A-Xing Zhu
{"title":"Spatial prediction of groundwater level change based on the Third Law of Geography","authors":"Fang-He Zhao, Jingyi Huang, A-Xing Zhu","doi":"10.1080/13658816.2023.2248215","DOIUrl":null,"url":null,"abstract":"Abstract Spatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2129 - 2149"},"PeriodicalIF":4.3000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2248215","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Spatial prediction methods are an important means of predicting the spatial variation of groundwater level change. Existing methods extract spatial or statistical relationships from samples to represent the study area for inference and require a representative sample set that is usually in large quantity and is distributed across geographic or covariate space. However, samples for groundwater are usually sparsely and unevenly distributed. In this paper, an approach based on the Third Law of Geography is proposed to make predictions by comparing the similarity between each individual sample and unmeasured site. The approach requires no specific number or distribution of samples and provides individual uncertainty measures at each location. Experiments in three different watersheds across the U.S. show that the proposed methods outperform machine learning methods when available samples do not well represent the area. The provided uncertainty measures are indicative of prediction accuracy by location. The results of this study also show that the spatial prediction based on the Third Law of Geography can also be successfully applied to dynamic variables such as groundwater level change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于地理第三定律的地下水位变化空间预测
空间预测方法是预测地下水位空间变化的重要手段。现有的方法从样本中提取空间或统计关系来代表研究区域进行推理,并且需要一个具有代表性的样本集,通常数量很大,分布在地理或协变量空间中。然而,地下水样本通常分布稀疏且不均匀。本文提出了一种基于地理第三定律的方法,通过比较每个样本与未测量地点之间的相似性来进行预测。该方法不需要样品的特定数量或分布,并在每个位置提供单独的不确定度测量。在美国三个不同的流域进行的实验表明,当可用样本不能很好地代表该区域时,所提出的方法优于机器学习方法。所提供的不确定度测量表明了位置的预测精度。研究结果还表明,基于地理第三定律的空间预测也可以成功地应用于地下水位变化等动态变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
期刊最新文献
Visual attention-guided augmented representation of geographic scenes: a case of bridge stress visualization A multi-hierarchical method to extract spatial network structures from large-scale origin-destination flow data A deep learning approach to recognizing fine-grained expressway location reference from unstructured texts in Chinese A knowledge-guided visualization framework of disaster scenes for helping the public cognize risk information A methodology to Geographic Cellular Automata model accounting for spatial heterogeneity and adaptive neighborhoods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1