Peichen Zhang, Lingyan Shi, Tingting Zhang, Lin Hong, Wei He, Peihai Cao, Xin Shen, Peisen Zheng, Yiqun Xia, Peng Zou
{"title":"Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells.","authors":"Peichen Zhang, Lingyan Shi, Tingting Zhang, Lin Hong, Wei He, Peihai Cao, Xin Shen, Peisen Zheng, Yiqun Xia, Peng Zou","doi":"10.1007/s13402-019-00471-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Oxaliplatin is one of the most commonly used chemotherapeutic agents in the treatment of various cancers, including gastric cancer. It has, however, a narrow therapeutic index due to its toxicity and the occurrence of drug resistance. Therefore, there is a pressing need to develop novel therapies to potentiate the efficacy and reduce the toxicity of oxaliplatin. Piperlongumine (PL), an alkaloid isolated from Piper longum L., has recently been identified as a potent agent against cancer cells in vitro and in vivo. In the present study, we investigated whether PL can potentiate the antitumor effect of oxaliplatin in gastric cancer cells.</p><p><strong>Methods: </strong>Cellular apoptosis and ROS levels were analyzed by flow cytometry. Thioredoxin reductase 1 (TrxR1) activity in gastric cancer cells or tumor tissues was determined using an endpoint insulin reduction assay. Western blotting was used to analyze the expression levels of the indicated proteins. Nude mice xenograft models were used to test the effects of PL and oxaliplatin combinations on gastric cancer cell growth in vivo.</p><p><strong>Results: </strong>We found that PL significantly enhanced oxaliplatin-induced growth inhibition in both gastric and colon cancer cells. Moreover, we found that PL potentiated the antitumor effect of oxaliplatin by inhibiting TrxR1 activity. PL combined with oxaliplatin markedly suppressed the activity of TrxR1, resulting in the accumulation of ROS and, thereby, DNA damage induction and p38 and JNK signaling pathway activation. Pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly abrogated the combined treatment-induced ROS generation, DNA damage and apoptosis. Importantly, we found that activation of the p38 and JNK signaling pathways prompted by PL and oxaliplatin was also reversed by NAC pretreatment. In vivo, we found that PL combined with oxaliplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, we found that PL attenuated body weight loss evoked by oxaliplatin treatment.</p><p><strong>Conclusions: </strong>Our data support a synergistic effect of PL and oxaliplatin and suggest that application of its combination may be more effective for the treatment of gastric cancer than oxaliplatin alone.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":"42 1","pages":"847-860"},"PeriodicalIF":6.6000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13402-019-00471-x","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-019-00471-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 40
Abstract
Purpose: Oxaliplatin is one of the most commonly used chemotherapeutic agents in the treatment of various cancers, including gastric cancer. It has, however, a narrow therapeutic index due to its toxicity and the occurrence of drug resistance. Therefore, there is a pressing need to develop novel therapies to potentiate the efficacy and reduce the toxicity of oxaliplatin. Piperlongumine (PL), an alkaloid isolated from Piper longum L., has recently been identified as a potent agent against cancer cells in vitro and in vivo. In the present study, we investigated whether PL can potentiate the antitumor effect of oxaliplatin in gastric cancer cells.
Methods: Cellular apoptosis and ROS levels were analyzed by flow cytometry. Thioredoxin reductase 1 (TrxR1) activity in gastric cancer cells or tumor tissues was determined using an endpoint insulin reduction assay. Western blotting was used to analyze the expression levels of the indicated proteins. Nude mice xenograft models were used to test the effects of PL and oxaliplatin combinations on gastric cancer cell growth in vivo.
Results: We found that PL significantly enhanced oxaliplatin-induced growth inhibition in both gastric and colon cancer cells. Moreover, we found that PL potentiated the antitumor effect of oxaliplatin by inhibiting TrxR1 activity. PL combined with oxaliplatin markedly suppressed the activity of TrxR1, resulting in the accumulation of ROS and, thereby, DNA damage induction and p38 and JNK signaling pathway activation. Pretreatment with antioxidant N-acetyl-L-cysteine (NAC) significantly abrogated the combined treatment-induced ROS generation, DNA damage and apoptosis. Importantly, we found that activation of the p38 and JNK signaling pathways prompted by PL and oxaliplatin was also reversed by NAC pretreatment. In vivo, we found that PL combined with oxaliplatin significantly suppressed tumor growth in a gastric cancer xenograft model, and effectively reduced the activity of TrxR1 in tumor tissues. Remarkably, we found that PL attenuated body weight loss evoked by oxaliplatin treatment.
Conclusions: Our data support a synergistic effect of PL and oxaliplatin and suggest that application of its combination may be more effective for the treatment of gastric cancer than oxaliplatin alone.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.