{"title":"On the advanced lapping process in the precision finishing of thin-film magnetic recording heads for rigid disc drives","authors":"M. Jiang, S. Hao, R. Komanduri","doi":"10.1007/s00339-002-2021-4","DOIUrl":null,"url":null,"abstract":"<p>Precision abrasive finishing is a key technology in the manufacture of thin-film magnetic heads (TFH) for rigid disc drives. The read and write microdevices of the recording heads are fabricated on ceramic substrates (“wafers”) using thin-film processing technology. After wafer processing, the substrates are sliced to individual bars (containing 46 heads per bar) using a diamond dicing wheel. They are then finished using an advanced lapping process with individual head close-loop control (sensor height control for the control of the material removal as well as for the end point detection). Finally, the bars are diced into individual heads (called “sliders”) using a diamond dicing wheel. The slider abrasive finishing process critically affects the magnetic, electrical and mechanical performance of the recording heads. This paper presents the results of some experimental studies based on the state-of-the-art abrasive finishing of recording heads, taking into account the critical challenges involved, namely the sensor height control, pole-tip recession (PTR) (metal dishing), alumina recession (AluR) (oxide erosion), trailing-edge profile, polishing uniformity, smearing, surface roughness (scratches) and air-bearing surface (ABS) flatness. The relative advantages of the fixed- versus free-abrasive processes are also discussed. The results of chemical-mechanical fixed-abrasive lapping/nanogrinding to achieve near-zero PTR (to minimize magnetic space loss) and low AluR (to reduce flying height variation) to meet the high areal density head requirements are also presented. </p>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"77 7","pages":"923 - 932"},"PeriodicalIF":2.5000,"publicationDate":"2003-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00339-002-2021-4","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-002-2021-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 29
Abstract
Precision abrasive finishing is a key technology in the manufacture of thin-film magnetic heads (TFH) for rigid disc drives. The read and write microdevices of the recording heads are fabricated on ceramic substrates (“wafers”) using thin-film processing technology. After wafer processing, the substrates are sliced to individual bars (containing 46 heads per bar) using a diamond dicing wheel. They are then finished using an advanced lapping process with individual head close-loop control (sensor height control for the control of the material removal as well as for the end point detection). Finally, the bars are diced into individual heads (called “sliders”) using a diamond dicing wheel. The slider abrasive finishing process critically affects the magnetic, electrical and mechanical performance of the recording heads. This paper presents the results of some experimental studies based on the state-of-the-art abrasive finishing of recording heads, taking into account the critical challenges involved, namely the sensor height control, pole-tip recession (PTR) (metal dishing), alumina recession (AluR) (oxide erosion), trailing-edge profile, polishing uniformity, smearing, surface roughness (scratches) and air-bearing surface (ABS) flatness. The relative advantages of the fixed- versus free-abrasive processes are also discussed. The results of chemical-mechanical fixed-abrasive lapping/nanogrinding to achieve near-zero PTR (to minimize magnetic space loss) and low AluR (to reduce flying height variation) to meet the high areal density head requirements are also presented.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.