Conical Ground Helical Antenna with Feed-Through Insulator for High-Power Microwave Applications

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2022-09-30 DOI:10.26866/jees.2022.5.r.119
Seung Hun Cha, J. Choi, Jiheon Ryu, H. Kwon, Sangmi Lee, D. Son, Y. Yoon
{"title":"Conical Ground Helical Antenna with Feed-Through Insulator for High-Power Microwave Applications","authors":"Seung Hun Cha, J. Choi, Jiheon Ryu, H. Kwon, Sangmi Lee, D. Son, Y. Yoon","doi":"10.26866/jees.2022.5.r.119","DOIUrl":null,"url":null,"abstract":"In this paper, a novel helical antenna for high-power microwave is proposed. The proposed antenna is intended to demonstrate improved power handling capacity without any deterioration in matching characteristics, gain, and axial ratio. The proposed antenna with a long helix structure is investigated in order to achieve high gain and a relatively wide impedance bandwidth. By increasing the distance between the helix and the ground plane, an improved power handling capacity is obtained, and the impedance matching problem caused by the proposed method is addressed with the use of a feed-through insulator. In addition, a conical-shaped ground is used to compensate for the gain reduction by increasing the distance between the helix and the ground plane. As a result, the proposed antenna exhibits a gain exceeding 11 dBi and an axial ratio of less than 2 dB within the frequency range of 0.86–1.09 GHz. In addition, its power handling capacity exceeds 50 MW for a 0.7-ns input pulse length in air conditions.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2022.5.r.119","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel helical antenna for high-power microwave is proposed. The proposed antenna is intended to demonstrate improved power handling capacity without any deterioration in matching characteristics, gain, and axial ratio. The proposed antenna with a long helix structure is investigated in order to achieve high gain and a relatively wide impedance bandwidth. By increasing the distance between the helix and the ground plane, an improved power handling capacity is obtained, and the impedance matching problem caused by the proposed method is addressed with the use of a feed-through insulator. In addition, a conical-shaped ground is used to compensate for the gain reduction by increasing the distance between the helix and the ground plane. As a result, the proposed antenna exhibits a gain exceeding 11 dBi and an axial ratio of less than 2 dB within the frequency range of 0.86–1.09 GHz. In addition, its power handling capacity exceeds 50 MW for a 0.7-ns input pulse length in air conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高功率微波应用的带馈通绝缘体的锥形接地螺旋天线
本文提出了一种用于高功率微波的新型螺旋天线。所提出的天线旨在展示改进的功率处理能力,而不会在匹配特性、增益和轴比方面出现任何恶化。为了实现高增益和相对宽的阻抗带宽,研究了所提出的长螺旋结构天线。通过增加螺旋线和接地平面之间的距离,获得了改进的功率处理能力,并通过使用馈通绝缘体来解决由所提出的方法引起的阻抗匹配问题。此外,锥形接地用于通过增加螺旋线和接地平面之间的距离来补偿增益降低。因此,所提出的天线在0.86–1.09 GHz的频率范围内表现出超过11 dBi的增益和小于2 dB的轴比。此外,在空气条件下,其功率处理能力超过50MW,输入脉冲长度为0.7-ns。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
FMCW Interference Waveform Estimation Based on Intentional Local Interference for Automotive Radars Four-Element Biodegradable Substrate-Integrated MIMO DRA with Radiation Diversity Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1