REACTIVE POWER CONTROL IN MICRO-GRID NETWORKS USING ADAPTIVE CONTROL

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Engineering & Electromechanics Pub Date : 2019-10-28 DOI:10.20998/2019.5.11
A. Moghayadniya, E. Razavi
{"title":"REACTIVE POWER CONTROL IN MICRO-GRID NETWORKS USING ADAPTIVE CONTROL","authors":"A. Moghayadniya, E. Razavi","doi":"10.20998/2019.5.11","DOIUrl":null,"url":null,"abstract":"Purpose. Despite their economic and environmental benefits, distributed products in power systems have caused problems in power systems. One of the most important issues in this regard is voltage fluctuations and frequencies in Micro-grids, which depends on several factors, such as variable consumption load and errors in power systems. One of the main challenges associated with the use of Micro-grids is power management among distributed generation sources. Power management plays a pivotal role in numerous Micro-grids and may ensure the stable and improved performance of Micro-grids in the permanent status of the system. The present study aimed to examine the power control in Micro-grids by proposing an adaptive control method along with the PID controller for power management and coordination in Micro-grids. This coordination system operates between production sources and controlling the voltage and frequency levels against the possible disturbances occurring anywhere in the system loop. The results of the simulation of the proposed algorithm in MATLAB software environment exhibited a high success rate (i.e., proper response to the fluctuations in the Micro-grid) and extremely low error rate (i.e., proper reactive power in the grid).","PeriodicalId":44198,"journal":{"name":"Electrical Engineering & Electromechanics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering & Electromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2019.5.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose. Despite their economic and environmental benefits, distributed products in power systems have caused problems in power systems. One of the most important issues in this regard is voltage fluctuations and frequencies in Micro-grids, which depends on several factors, such as variable consumption load and errors in power systems. One of the main challenges associated with the use of Micro-grids is power management among distributed generation sources. Power management plays a pivotal role in numerous Micro-grids and may ensure the stable and improved performance of Micro-grids in the permanent status of the system. The present study aimed to examine the power control in Micro-grids by proposing an adaptive control method along with the PID controller for power management and coordination in Micro-grids. This coordination system operates between production sources and controlling the voltage and frequency levels against the possible disturbances occurring anywhere in the system loop. The results of the simulation of the proposed algorithm in MATLAB software environment exhibited a high success rate (i.e., proper response to the fluctuations in the Micro-grid) and extremely low error rate (i.e., proper reactive power in the grid).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应控制的微电网无功控制
目的。电力系统中的分布式产品虽然具有经济效益和环境效益,但也给电力系统带来了问题。在这方面最重要的问题之一是微电网的电压波动和频率,这取决于几个因素,如可变的消耗负荷和电力系统的误差。与使用微电网相关的主要挑战之一是分布式发电源之间的电力管理。在众多的微电网中,电源管理起着至关重要的作用,它可以确保微电网在系统的永久状态下稳定和提高性能。本文针对微电网中的功率控制问题,提出了一种结合PID控制器的自适应控制方法,用于微电网的功率管理和协调。该协调系统在生产源之间运行,并控制电压和频率水平,以防止系统回路中任何地方可能发生的干扰。本文算法在MATLAB软件环境下的仿真结果表明,该算法具有较高的成功率(即对微电网波动的适当响应)和极低的错误率(即电网中适当的无功功率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrical Engineering & Electromechanics
Electrical Engineering & Electromechanics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
50.00%
发文量
53
审稿时长
10 weeks
期刊最新文献
The mutual influence of exciting and induced currents in the circular solenoid – massive conductor system Current-voltage characteristics of single-stage semiconductor magnetic pulse generators with a distinctive structure of the conversion link in the input circuit Optimal hybrid photovoltaic distributed generation and distribution static synchronous compensators planning to minimize active power losses using adaptive acceleration coefficients particle swarm optimization algorithms Estimation of electrical resistivity of conductive materials of random shapes Modeling and research of a magnetoelectric converter for hydro and pneumo actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1