A deep-reinforcement learning approach for optimizing homogeneous droplet routing in digital microfluidic biochips

IF 3.5 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Pub Date : 2023-06-01 DOI:10.1063/10.0017350
Basudev Saha, Bidyut Das, M. Majumder
{"title":"A deep-reinforcement learning approach for optimizing homogeneous droplet routing in digital microfluidic biochips","authors":"Basudev Saha, Bidyut Das, M. Majumder","doi":"10.1063/10.0017350","DOIUrl":null,"url":null,"abstract":"Over the past two decades, digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis, drug discovery, and immunoassays, among other areas. However, for complex bioassays, finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task. In this study, we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips. The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets. The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer, and the learner fetches the experiences and updates the routing paths. The proposed algorithm was applied to benchmark suites I and III as two different test benches, and it achieved significant improvements over state-of-the-art techniques.","PeriodicalId":35428,"journal":{"name":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1063/10.0017350","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two decades, digital microfluidic biochips have been in much demand for safety-critical and biomedical applications and increasingly important in point-of-care analysis, drug discovery, and immunoassays, among other areas. However, for complex bioassays, finding routes for the transportation of droplets in an electrowetting-on-dielectric digital biochip while maintaining their discreteness is a challenging task. In this study, we propose a deep reinforcement learning-based droplet routing technique for digital microfluidic biochips. The technique is implemented on a distributed architecture to optimize the possible paths for predefined source–target pairs of droplets. The actors of the technique calculate the possible routes of the source–target pairs and store the experience in a replay buffer, and the learner fetches the experiences and updates the routing paths. The proposed algorithm was applied to benchmark suites I and III as two different test benches, and it achieved significant improvements over state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于优化数字微流控生物芯片中均匀液滴路径的深度强化学习方法
在过去的二十年里,数字微流体生物芯片在安全关键和生物医学应用中有着巨大的需求,在护理点分析、药物发现和免疫测定等领域也越来越重要。然而,对于复杂的生物测定来说,在保持液滴离散性的同时,寻找电润湿电介质数字生物芯片中液滴的传输路线是一项具有挑战性的任务。在这项研究中,我们提出了一种基于深度强化学习的数字微流控生物芯片液滴路由技术。该技术在分布式架构上实现,以优化预定义的源-目标液滴对的可能路径。该技术的参与者计算源-目标对的可能路线,并将经验存储在回放缓冲区中,学习者获取经验并更新路由路径。所提出的算法被应用于作为两个不同测试台的基准套件I和III,与最先进的技术相比,它实现了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering
Nami Jishu yu Jingmi Gongcheng/Nanotechnology and Precision Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
6.50
自引率
0.00%
发文量
1379
审稿时长
14 weeks
期刊最新文献
An advanced cost-efficient IoT method for stroke rehabilitation using smart gloves Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming Droplet microfluidic chip for precise monitoring of dynamic solution changes Effects of simulated zero gravity on adhesion, cell structure, proliferation, and growth behavior, in glioblastoma multiforme Electrode design for multimode suppression of aluminum nitride tuning fork resonators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1