Two Calculation Verification Metrics Used in the Medical Device Industry: Revisiting the Limitations of Fractional Change

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2022-09-05 DOI:10.1115/1.4055506
Ismail Guler, K. Aycock, N. Rebelo
{"title":"Two Calculation Verification Metrics Used in the Medical Device Industry: Revisiting the Limitations of Fractional Change","authors":"Ismail Guler, K. Aycock, N. Rebelo","doi":"10.1115/1.4055506","DOIUrl":null,"url":null,"abstract":"\n Quantifying the fractional change in a predicted quantity of interest with successive mesh refinement is an attractive and widely used but limited approach to assessing numerical error and uncertainty in physics-based computational modeling. Herein, we introduce the concept of a scalar multiplier αGCI to clarify the connection between fractional change and a more rigorous and accepted estimate of numerical uncertainty, the grid convergence index (GCI). Specifically, we generate lookup tables for αGCI as a function of observed order of accuracy and mesh refinement factor. We then illustrate the limitations of relying on fractional change alone as an acceptance criterion for mesh refinement using a case study involving the radial compression of a Nitinol stent. Results illustrate that numerical uncertainty is often many times larger than the observed fractional change in a mesh pair, especially in the presence of small mesh refinement factors or low orders of accuracy. We strongly caution against relying on fractional change alone as an acceptance criterion for mesh refinement studies, particularly in any high-risk applications requiring absolute prediction of quantities of interest. When computational resources make the systematic refinement required for calculating GCI impractical, submodeling approaches as demonstrated herein can be used to rigorously quantify discretization error at comparatively minimal computational cost. To facilitate future quantitative mesh refinement studies, αGCI lookup tables herein provide a useful tool for guiding the selection of mesh refinement factor and element order.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4055506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Quantifying the fractional change in a predicted quantity of interest with successive mesh refinement is an attractive and widely used but limited approach to assessing numerical error and uncertainty in physics-based computational modeling. Herein, we introduce the concept of a scalar multiplier αGCI to clarify the connection between fractional change and a more rigorous and accepted estimate of numerical uncertainty, the grid convergence index (GCI). Specifically, we generate lookup tables for αGCI as a function of observed order of accuracy and mesh refinement factor. We then illustrate the limitations of relying on fractional change alone as an acceptance criterion for mesh refinement using a case study involving the radial compression of a Nitinol stent. Results illustrate that numerical uncertainty is often many times larger than the observed fractional change in a mesh pair, especially in the presence of small mesh refinement factors or low orders of accuracy. We strongly caution against relying on fractional change alone as an acceptance criterion for mesh refinement studies, particularly in any high-risk applications requiring absolute prediction of quantities of interest. When computational resources make the systematic refinement required for calculating GCI impractical, submodeling approaches as demonstrated herein can be used to rigorously quantify discretization error at comparatively minimal computational cost. To facilitate future quantitative mesh refinement studies, αGCI lookup tables herein provide a useful tool for guiding the selection of mesh refinement factor and element order.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗器械行业中使用的两种计算验证度量:对分数变化限制的重新审视
在基于物理的计算建模中,用连续的网格细化来量化预测的感兴趣量的分数变化是一种有吸引力的、广泛使用但有限的评估数值误差和不确定性的方法。在此,我们引入了标量乘法器αGCI的概念,以阐明分数变化与更严格和公认的数值不确定性估计——网格收敛指数(GCI)之间的联系。具体来说,我们生成αGCI的查找表,作为观察到的精度阶数和网格细化因子的函数。然后,我们通过一个涉及镍钛诺支架径向压缩的案例研究,说明了仅依赖分数变化作为网格细化的验收标准的局限性。结果表明,数值不确定性通常是网格对中观察到的分数变化的数倍,尤其是在网格细化因子较小或精度较低的情况下。我们强烈警告不要将分数变化单独作为网格细化研究的接受标准,特别是在任何需要绝对预测感兴趣量的高风险应用中。当计算资源使得计算GCI所需的系统细化不切实际时,本文所示的子模型方法可以用于以相对最小的计算成本严格量化离散化误差。为了促进未来的定量网格细化研究,本文的αGCI查找表为指导网格细化因子和元素顺序的选择提供了一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
A Curved Surface Integral Method for Reliability Analysis of Multiple Failure Modes System with Non-Overlapping Failure Domains A Framework for Developing Systematic Testbeds for Multi-Fidelity Optimization Techniques Reliability Analysis for RV Reducer by Combining PCE and Saddlepoint Approximation Considering Multi-Failure Modes Machine Learning-Based Resilience Modeling and Assessment of High Consequence Systems Under Uncertainty Posterior Covariance Matrix Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1