Improving bus arrival time predictors using only public transport API data

{"title":"Improving bus arrival time predictors using only public transport API data","authors":"","doi":"10.1080/19427867.2023.2245994","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of bus arrival times can greatly benefit public transport users, allowing them to better plan their journeys in cities. The usual <em>Expected Time of Arrival (ETA)</em> estimators provided to citizens use all the information available to the bus service provider (vehicle position, traffic, etc.); in this paper we propose a procedure to improve these estimators that relies <em>solely</em> on historical ETA records provided by public transport councils through application programming interfaces (APIs). This improvement is achieved by means of a machine learning scheme that predicts and corrects the systematic errors of the available ETA estimators. Significant improvements in terms of error mean and standard deviation are achieved for the Madrid and Paris bus fleets. These robust results and the fact that the proposed scheme uses <em>only</em> historical and online information provided by APIs, without requiring the cooperation of the service provider, support the suitability of the proposed method for general public benefit applications toward the sustainability of cities.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 8","pages":"Pages 804-813"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723002278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of bus arrival times can greatly benefit public transport users, allowing them to better plan their journeys in cities. The usual Expected Time of Arrival (ETA) estimators provided to citizens use all the information available to the bus service provider (vehicle position, traffic, etc.); in this paper we propose a procedure to improve these estimators that relies solely on historical ETA records provided by public transport councils through application programming interfaces (APIs). This improvement is achieved by means of a machine learning scheme that predicts and corrects the systematic errors of the available ETA estimators. Significant improvements in terms of error mean and standard deviation are achieved for the Madrid and Paris bus fleets. These robust results and the fact that the proposed scheme uses only historical and online information provided by APIs, without requiring the cooperation of the service provider, support the suitability of the proposed method for general public benefit applications toward the sustainability of cities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进仅使用公共交通API数据的巴士到达时间预测
准确预测公交车的到达时间对公共交通用户大有裨益,可以让他们更好地规划自己在城市中的行程。通常提供给市民的预计到达时间(ETA)估算器使用的是公交服务提供商可获得的所有信息(车辆位置、交通状况等);在本文中,我们提出了一种改进这些估算器的程序,该程序仅依赖于公共交通委员会通过应用程序接口(API)提供的历史 ETA 记录。这种改进是通过一种机器学习方案来实现的,该方案可预测并纠正现有 ETA 估算器的系统误差。马德里和巴黎公交车队在误差平均值和标准偏差方面均有显著改善。这些稳健的结果,以及拟议方案仅使用由应用程序接口(API)提供的历史和在线信息,而无需服务提供商的合作这一事实,都证明了拟议方法适用于促进城市可持续发展的一般公益应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
14.30%
发文量
79
审稿时长
>12 weeks
期刊介绍: Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research. The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.
期刊最新文献
Analysis of the factors affecting the time spent on leisure activities by using an ordered logit model A fast-response mathematical programming approach for delivering disaster relief goods: an earthquake case study The Integrated optimization of intermittent lane intersection design and dynamic signal control: efficiency, safety, and fuel consumption Parcel locker location problem with selectable volume sizes and heterogeneous customers in the last mile delivery Investigating the spatial heterogeneity of factors influencing speeding-related crash severities using correlated random parameter order models with heterogeneity-in-means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1